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A RADIOCARBON METHOD AND MULTI-TRACER APPROACH TO QUANTIFYING
GROUNDWATER DISCHARGE TO COASTAL WATERS

by

Carolyn M. Gramling

Groundwater discharge into estuaries and the coastal ocean is an important
mechanism for the transport of dissolved chemical species to coastal waters. Because
many dissolved species are present in groundwater in concentrations that are orders of
magnitude higher than typical river concentrations, groundwater-borne nutrients and
pollutants can have a substantial impact on the chemistry and biology of estuaries and the
coastal ocean. However, direct fluxes of groundwater into the coastal ocean (submarine
groundwater discharge, or SGD) can be difficult to quantify. Geochemical tracers of
groundwater discharge can reflect the cumulative SGD flux from numerous small, widely
dispersed, and perhaps ephemeral sources such as springs, seeps, and diffuse discharge.

The natural radiocarbon content (A*C) of dissolved inorganic carbon (DIC) was
developed as a tracer of fresh, terrestrially driven fluxes from confined aquifers. This
AM™C method was tested during five sampling periods from November 1999 to April 2002
in two small estuaries in southeastern North Carolina. In coastal North Carolina, fresh
water artesian discharge is characterized by a low A'C signature acquired from the
carbonate aquifer rock. Mixing models were used to evaluate the inputs from potential
sources of DIC-AC to each estuary, including seawater, springs, fresh water stream
inputs, and salt marsh respiration DIC additions. These calculations showed that artesian
discharge dominated the total fresh water input to these estuaries during nearly all
sampling periods.

These new A™C-based SGD estimates were compared with groundwater flux
estimates derived from radium isotopes and from radon-222. It is clear that these tracers
reflect different components of the total SGD. The fluxes of low-A!*C and of *’Rn were
dominated by artesian discharge. Estuarine *Ra showed strong artesian influence, but
also reflected the salt water SGD processes that controlled the other three radium
isotopes. The flux of ??®Ra seemed to reflect seepage from the terrestrial surficial aquifer
as well as salt water recirculation through estuarine sediments. The fluxes of ***Ra and
?23Ra were dominated by salt water recirculation through salt marsh sediments. This
multi-tracer approach provides a comprehensive assessment of the various components
contributing to the total SGD.
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Chapter 1. Introduction

Motivation and Background

Groundwater discharge into estuaries and the coastal ocean is an important
mechanism for the transport of nutrients and other dissolved chemical species to coastal
waters. Because many dissolved chemical species are present in groundwater in
concentrations that are orders of magnitude higher than typical river concentrations,
groundwater-borne nutrients and pollutants can have a substantial impact on the
chemistry and biology of estuaries and the coastal ocean (e.g. Capone and Bautista 1985;
Valiela et al 1990; Giblin and Gaines 1990; Simmons 1992).

Direct fluxes of groundwater into the coastal ocean (called submarine
groundwater discharge, or SGD) can be difficult to quantify. This is partially due to
some variability in the definition of SGD itself. While the term has, in the past, been
used to describe various land-sea fluxes of fresh water, including diffuse seepage of
groundwater where the water table intersects the coast and focused artesian flow from
seafloor springs (Stringfield, 1966; Manheim 1967; Rosenau et al. 1977; Johannes 1980),
it is now more generally used to include all subsurface water, at a range of salinities and
chemical compositions, discharging at or near the coast (Moore 1999; Burnett et al 2002).
This can include, in addition to fresh, terrestrially-driven fluxes, seawater recirculation
through coastal sediments resulting from the entrainment of salt water as seaward-
flowing fresh groundwater overrides a landward-penetrating saltwater wedgé, and wave-
or tide-driven infiltration of salt water into coastal sediments (beaches, mud flats, salt
marshes) that contain some fresh groundwater (Bollinger and Moore 1984; Moore 1999).

Hydrologic methods, including direct seepage meter measurements of benthic
water fluxes and flow calculations using piezometer data, yield point estimates of
groundwater discharge, but these estimates may be difficult to extrapolate to a larger area
due to the spatial and temporal heterogeneity of SGD along a shoreline (Valiela et al
1990; Bokuniewicz 1992; Simmons 1992; Robinson et al 1998).

Geochemical tracers of groundwater discharge can reflect the cumulative SGD

flux from numerous small, widely dispersed, and perhaps ephemeral sources such as
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springs, seeps, and diffuse discharge. However, geochemical tracers of SGD have
different input mechanisms, and therefore can provide different estimates of the total
flux. Deciding which geochemical tracer to use to estimate SGD mayvbe a matter of
determining which of its components is of greatest interest in a particular setting. As an
example, nutrient loading in an estuary may result from the oxidation and release of |
buried nutrients due to recirculating seawater through bottom sediments, or from
localized, artesian discharge from springs originating in a nutrient-enriched aquifer. To
predict nutrient loading, therefore, it may be essential to understand the relative
~ importance of several different components of SGD. | |

The four isotopes of radium (226Ra, 228Ra, °Ra, and ?**Ra) and the dissolved ygas
222Rn are used as geochemical tracers of SGD because they tend to be highly enriched in
groundwater relative to seawater, behave conservatively with respect to biological
'processes, and radioactively decay over a range of half-lives that make them useful for
measuring the mixing of water masses over different time scales (e.g. Bollinger and
Moore 1993; Rama and Moore 1996; Cable et al 1996; Krest et al 2000; Corbett et al |
1999, 2000). -

- Radium desorption from aquifer or riverine particles is enhancéd in wéters of
increasing idnic strength, and the groundwater radium flux is alfnost cértainly elevated as
radium is desorbed from aquifer sediments by salt water intrusion (e.g. Elsinger and |
Moore 1980; Burnett et al 1990; Moore 1996). Therefore, fluxes of radium are likely to
provide an estimate of the total SGD — including terrestrially-driven groundwater flux,
the recirculation of seawater through surface sediments and through sub-bottom rock
units on continental shelVes, and the tidal filling and draining of salt mafsh sediments —
rather than of fresh, land-sea fluxes alone (e.g. Moore 1999; Burnett et al 2002; Cable et
al 2003). Radon is not sensitive to salinity-linked desorption reactions, but it is quickly
lost to the atmosphere via gas exchange once groundwater is exposed at the land surface.
As aresult, coastal 222Rn activities may provide only a minimum estimate of the total

groundwater flux (Corbett et al 1999; Swarzenski et al 2001).
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In principle, A™C can be used to trace SGD inputs from any water source with a
distinct radiocarbon content. In coastal North Carolina, fresh water artesian discharge is
characterized by a low AC signature acquired from the carbonate aquifer rock. This
work demonstrates that coupled analyses of dissolved inorganic carbon concentrations
(DIC) and carbon isotopic compositions (A™C and 8"°C values) can provide a tracer of
one component of the total SGD flux — the fresh groundwater discharge from confined
aquifers. After determining the total fresh water input to an estuary by a salinity mass
balance, a radiocarbon mass balance is then used to partition between surface water
sources (including stream flow and seepage from the surficial aquifer) and artesian flow
from confined aquifers. '

In this dissertation, A'C is developed as a tracer of fresh, terrestrially driven
fluxes from confined aquifers. Groundwater flux estimates were derived from two other -
geochemical tracers of groundwater discharge, radium and radon, to determine the
processes that influenced each tracer in two small estuaries in southeastern North
Carolina. This suite of tracers was then used to show that artesian springs dominated the
fresh water budgets of these estuaries, while other SGD processes, including seepage
from the surficial aquifer and seawater recirculation through salt marsh sediments,

contributed to the total SGD in these estuaries.

Study Site: Geologic and Hydrogeologi’c Characteristics

The Onslow Bay region of the southeastern North Carolina coastal plain lies
between Cape Fear and Cape Lookout. The potential for land-sea groundwater exchange
is high in this region; a number of studies of the coastal hydrology and geology have
recognized groundwater with intermediate salinity discharging on the inner and mid-shelf
regions of Onslow Bay, suggesting the possibility of a strong onshore-offshore hydraulic
" connection (Sherwani 1980; Lloyd and Daniel 1988).

North Carolina coastal plain geology consists of Upper Cretaceous and Cenozoic
formations of interbedded sands, silts, clays, and limestones that dip and thicken

eastward, extending beneath the continental shelf (Riggs et al. 1995; Winner and Coble
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1996; Harris 1996) (Figure 1). In the Cape Fear region, the highly productive Eocene
Castle Hayne aquifer (consisting primarily of shell Iimesione, dolomitic limestone, sandy
;liméstone, and fine to medium sand) immediately underlies the unconsolidated sands and
clays of the surficial aquifer (Winner and Coble, 1996; Giese et al, 1997). The Castle
Hayne confining unit is thin (~ 3 m), and contains enough sand to allow some vertical |
leakage between the Castle Hayne and the overlying aquifers (W inner“and Coble, 1996;
Giese et al, 1997). The underlying Cretaceous units (the Peedee, Black Creek, and Cape '
Fear formations) contain interbedded sand, clay, and silt, which become calcareous in the
Peedee (Sohl and Owens 1991).

Organization of Dissertation |

This dissertation is organized into two primary parts: ‘Chapters I and II involve
the development of A'*C as a tracer of the fresh, confined component of SGD, while
Chapters III and IV focus on placing the A'*C-determined fluxes in the context of total

- SGD measurements using other geochemical SGD tracers, specifically ?22Rn and the four
- . radium isotopes. The data in each of these chapters was collected from within the samé
study area in southeastern North Carolina during six different sampling expeditions from
July 1997 to April 2002.

Chapter II, which was published in the May 2003 issue of Limnology and
Oceanography, describes in detail the development of the AMC method within a single
estuary. The chapter presents a mixing model that uses the distinct DIC—A”C Values’ in
confined aquifer discharge to the estuary via springs to distinguish these inputs from the
other potential sources of DIC-AC to the estuary (including seawater, fresh water
stream inputs, and salt marsh respiration DIC additions). Results from these mixing
- models show that artesian discharge dominated fresh water input fo the estuary during

sampling in November 1999 and April 2001, while stream flow dominated the fresh
~water input to the estuary during July 2000.

Chapter ITI presents radiocarbon data collected subsequent to Chapter II, dun'ng

sampling periods in April 2001, November 2001, and April 2002. In this chapter, the
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development of the A'C method is continued by examining further the variability of
DIC-A"C values in the non-spring input sources, particularly the respiration DIC inputs
and fresh water streams. Pore water DIC and DIC isotopic analyses confirm the
assumption, made in the previous éhapter, that salt marsh respiration would add DIC with
relatively high 'C, so that artesian sources remain the only low-AC input to the
estuaries. Variation in stream composition documents the variability of spring discharge
to stream flow in these watersheds, and provides an estimation of the uncertainty of AMC-
derived confined groundwater flux estimates. This chapter also tests the generality of the
A™C method of estimating artesian inputs by expanding to include a neighboring estuary.
DIC-A"C mixing model results from these sampling periods confirm that artesian inputs
dominate the total fresh water input to both estuaries during most sampling periods.

Chapter IV focuses on radium and radon data collected concurrently with the
AC data in Chapter III, and examines the different processes controlling the fluxes of
radium and radon from these two estuaries.

Chapter V uses the data compiled in Chapters III and IV to make an
intercomparison of flux estimates derived from A'C, ??Rn, and radium isotopes. This
intercomparison highlights how these different tracers describe different components of
the total flux. While the flux of low-AC DIC and ?*’Rn were dominated by artesian
discharge, *®Ra reflected seepage from the terrestrial surficial aquifer as well as salt
water recirculation through estuarine sediments. 2*Ra and 223Ra were dominated by salt
water recirculation through salt marsh sediments. 2*°Ra showed strong artesian influence,
but was also modified by the salty SGD processes that dominated the other three radium
isotopes.

The appendices include a brief discussion of nutrient data collected in November
2001 and April 2002 from both estuaries. A second appendix describes A™*C
measurements made in two wells on the continental shelf off the coast of North Carolina,
to test the effectiveness of the method when the salinity constraint is absent. A third
appendix presents well head data from the wells closest to the estuaries from November
1999 through April 2002.
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Figure I-1. Hydrogeologic section D-D’, across the Cape Fear region of North
Carolina (reproduced from Giese et al 1997). In the northeast half of the section,
the limestone Castle Hayne aquifer immediately underlies the unconfined, sandy

surficial aquifer.
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A carbon isotope method to quantify groundwater discharge at the land-sea interface

C. M. Gramling'

MIT/WHOI Joint Program in Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543

D. C. McCorkle and A. E. Mulligan?

Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 02543

T. L. Woods

Department of Geology, East Carolina University, Greenville, North Carolina 27858-4353

Abstract

We present a new method to characterize and quantify groundwater discharge to estuaries and the coastal ocean.
Using data from the Pages Creek estuary in the Cape Fear region of southeastern North Carolina, we show that the
concentration and carbon isotopic composition (A“C and 8 C values) of dissolved inorganic carbon (DIC) can
provide a tracer of a single, well-defined component of the surface water-groundwater system in coastal regions—
the integrated freshwater discharge to an estuary from confined aquifers. Groundwater from the two shallowest
confined aquifers in the Cape Fear region (the Castle Hayne and the Peedee) has DIC A'C values ranging from
—282%o to —829%., significantly lower than the radiocarbon content of surficial (water table) groundwater; rivers
and streams, and seawater in the area (A*C = —38%o to +97%c). DIC additions from salt marsh decomposition
and DIC removal via photosynthesis and gas evasion can influence estuarine DIC concentrations and DIC 8C
values. However, none of these processes results in strongly depleted DIC A™C values. Because artesian springs
are the only significant low-A*C DIC input to the Pages Creek estuary, flood-ebb “C budgets provide a direct
measure of the fraction of the total freshwater inputs to the Pages Creek estuary that is derived from artesian
discharge. With this method, we have observed a striking range in the relative contribution of artesian flow to the
Pages Creek estuary freshwater budget. During November 1999 and April 2001 (both periods of low precipitation
in southeastern North Carolina), artesian groundwater discharge could account for essentially all of the Pages Creek
freshwater inputs. In contrast, during July 2000 (a period of high precipitation in this region), artesian groundwater

made a negligible contribution to the creek’s freshwater budget.

Fresh groundwater can discharge into the coastal ocean
wherever there is a land-sea hydraulic connection with a
seaward head gradient (Johannes 1980), and it is widely rec-
ognized that groundwater-borne nutrients and pollutants can
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bave a substantial impact on the chemistry and biology of
estuaries and the coastal ocean (e.g., Capone and Bautista
1985; Giblin and Gaines 1990; Valiela et al. 1990; Simmons
1992). The potential importance of submarine groundwater
discharge is enhanced by the fact that many dissolved chem-
ical species have groundwater concentrations orders of mag-
nitude higher than typical river concentrations. The term
*submarine groundwater discharge” (SGD) has been used
to describe various land-sea groundwater fluxes, from diffuse
seepage of groundwater where the water table intersects the
coast to focused artesian flow from seafloor springs (String-
field 1966; Manheim 1967; Rosenau et al. 1977; Johannes
1980) (Fig. 1). This term can also include localized artesian
flow from small springs discharging directly into estuaries.

There is some ambiguity associated with the SGD con-
cept, because the discharging water can have salinities that
range from fresh- to seawater values. This can result from
entrainment of saltwater as seaward-flowing fresh ground-
water overrides a landward-penetrating saltwater wedge or
from wave- or tide-driven infiltration of salt water into coast-
al sediments (beaches, mud flats, and salt marshes) that con-
tain some fresh groundwater (Bollinger and Moore 1984;
Moore 1999). Recently, the term *‘subterranean estuary” has
been applied to the entire suite of sea-/groundwater inter-
actions along the coast (Moore 1999).

Hydrologic methods, including direct seepage meter mea-
surements of benthic water fluxes and flow calculations us-
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Fig. 1. (2) Simplified cross-section of a coastal groundwater sys-
tem, with principal transport features: (1) surficial groundwater dis-
charge at seepage face (dashed arrows represent schematic regional
flow lines); (2) seawater recirculation/intrusion; and (3) freshwater
discharge from confined aquifer. (b) Larger-scale schematic of Pages
Creck estuary groundwater system. The shallowest confined aquifer,
the Castle Hayne, discharges offshore, but some local springs dis-
charge into the estuary (4).

ing piezometer data, yield point estimates of SGD (Valiela
et al. 1990; Bokuniewicz 1992; Simmons 1992; Robinson et
al. 1998). However, the spatial and temporal heterogeneity
of SGD along a shoreline makes it difficult to extrapolate
seepage meter and piezometer estimates. This has resulted
in a growing interest in the use of geochemical tracers to
assess the cumulative impact of SGD from numerous small,
widely dispersed, and perhaps ephemeral sources such as
springs, seeps, and diffuse discharge. The use of geochem-
ical tracers of SGD is complicated by the fact that each tracer
has different fate and transport properties so that estimates
obtained using different tracers are not always easy to com-
pare.
Recently, several workers have used coastal radium iso-
tope budgets to conclude that submarine groundwater dis-
charge may be more widespread and more important than
has been thought (Burnett et al. 1990; Moore 1996, 1999;
Krest et al. 2000; Charette et al. 2001). However, there is an
acknowledged ambiguity ‘in the radium-based estimates of
groundwater flux into coastal waters-—the groundwater ra-
dium flux is almost certainly elevated as radium is desorbed
from aquifer sediments by salt water intrusion (Burnett et al.
1990; Moore 1996). This intrusion can occur because of nat-
ural processes (tidal pumping or natural changes in aquifer
recharge) or anthropogenic effects (increased groundwater
extraction or breaching of confining units by channel dredg-
ing). This desorption-driven enhancement of groundwater ra-
dium due to seawater intrusion is analogous to the enhanced
radium release observed in estuaries, where radium-bearing
riverine particles first encounter saltwater and where sea-
water seeps through tidal salt marsh sediments (e.g., Elsinger
and Moore 1980; Rama and Moore 1996). As a result, it is
recognized that radium may be a more sensitive indicator of

the total subsurface water flux, including processes such as '
seawater intrusion and the recirculation of seawater through
surface sediments and subbottom rock units on continental
shelves, than of the land-sea freshwater flux alone (Moore
1999).

Trace gases such as radon and methane are not sensitive
to salinity-linked desorption reactions and may thus more
closely reflect actual groundwater fluxes. Radon-222, like
radium, is often highly enriched in groundwater because its
parent, Ra, is present in most rocks and sediments. As a
consequence, elevated concentrations of ?Rn can document
groundwater discharge (Cable et al. 1997; Corbett et al.
1999; Swarzenski et al. 2001). Methane is also often strongly
enriched in groundwater relative to surface waters, as a result
of anaerobic organic matter decomposition within some
aquifers. Both of these gases are relatively insoluble in water
and have low atmospheric concentrations, so that both are
quickly lost via gas exchange once groundwater is exposed
at the earth’s surface. Methane can also be lost via oxidation
or microbial consumption. As a result, observed coastal
22Rn and CH, concentrations may provide only a minimum
estimate of the total groundwater flux (Corbett et al. 1999;
Swarzenski et al. 2001).

In the present study, we show that coupled analyses of
dissolved inorganic carbon concentrations (DIC) and carbon
isotopic compositions (AMC and 8°C values) provide a trac-
er of one component of the total SGD flux—fresh ground-
water discharge from confined aquifers. To estimate the con-
fined groundwater input to an estuary, we first determine the
total freshwater input using flood tide and ebb tide salinity
values. This freshwater input is then partitioned between sur-
face sources (including the water table aquifer) and artesian
groundwater using a carbon isotope mass balance based on
DIC concentrations and A™C values. Artesian groundwater
and springs are expected to have lower A“C values than
surface waters and surficial groundwater (Fig. 2). As a test
of this carbon-based method for estimating groundwater dis-
charge as a fraction of the total freshwater discharge, we
describe a study at Pages Creek, an estuary in Onslow Bay,
North Carolina. :

AMC systematics—Although the DIC and §'*C-DIC values
can be significantly modified by estuarine carbon cycle pro-
cesses, the very large difference between input end-member
AMC values and the natural double label provided by paired
13C and “C analyses (Spiker 1980) ensure that groundwater
flux estimates based on estuarine DIC AC values will be
largely unaffected by processes such as gas exchange, pho-
tosynthesis, and respiration of fresh organic matter.

&1C values are defined as

(°C/7°C) pon
13, _ ple ]
6"C(%o0) {('T/"C),,,,,M l} X 1000 a)
8“C is similarly defined as
MCIC),
14 = smmple b 11 5
84C(%o) { Cro),.... 1} 1000 2)

The 8"“C values are typically normalized to 8°C = —25%o
to remove fractionation effects that can result from processes
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such as CO, gas evasion or photosynthesis (Stuiver and Rob-
inson 1974). This normalized §'“C value is reported as A“C
(%0), which is defined as

A¥C(%0) = 1000

8“C 0.9752

1+
1000

This calculation assumes that the "C fractionation factor is
approximately equal to the square of the *C fractionation
factor, which results in a change in the 8“C value that is
almost twice that of §"°C per fraction of DIC used (Stuiver
and Robinson 1974).

As a result of this normalization, A*C values are un-
changed by DIC removal processes that fractionate carbon
isotopes. As a consequence, despite the fact that photosyn-
thetic CO, uptake and CO, gas evasion can exert a strong
influence on estuarine DIC (Cai and Wang 1998; Cai et al.
1999), estuarine A“C values will be determined by mixing
between the DIC sources. A*C values can therefore be used
as a quasi conservative tracer of DIC inputs.

Site characteristics—The Onslow Bay region of the
southeastern North Carolina coastal plain lies between Cape
Fear and Cape Lookout. The potential for land-sea ground-
water exchange is high in this region; a number of studies
of the coastal hydrology and geology have recognized
groundwater with intermediate salinity discharging on the
inner and midshelf regions of Onslow Bay, which suggests
the possibility of a strong onshore-offshore hydraulic con-
nection (Sherwani 1980; Lloyd and Daniel 1988).

North Carolina coastal plain geology consists of Upper
Cretaceous and Cenozoic formations of interbedded sands,
silts, clays, and limestones that dip and thicken eastward,
extending beneath the continental shelf (Riggs et al. 1995;
Harris 1996; Winner and Coble 1996). In the Cape Fear
region, the highly productive Eocene Castle Hayne aquifer
(consisting primarily of shell limestone, dolomitic limestone,
sandy limestone, and fine to medium sand) immediately un-
derlies the unconsolidated sands and clays of the surficial
aquifer (Giese et al. 1991; Winner and Coble 1996) (Fig.
1b). The Castle Hayne confining unit is thin (~3 m) and
contains enough sand to allow some vertical leakage be-
tween the Castle Hayne and the overlying aquifers (Wirniner
and Coble 1996; Giese et al. 1997). The underlying Creta-
ceous. units (the Peedee, Black Creek, and Cape Fear for-
mations) contain interbedded sand, clay, and silt, which be-
come calcareous in the Peedee (Sohl and Owens 1991).

The Pages Creek estuary is a small, well-mixed tidal creek
located on the Intracoastal Waterway (ICW), northeast of
Wilmington (Fig. 3a,b). Two inlets, Rich Inlet to the north
and Mason Inlet to the south, cut through the barrier islands
and salt marshes that separate the ICW and Onslow Bay.
The entire Pages Creek watershed has an area of ~1.2 X
107 m2, The Pages Creek estuary, including its salt marshes,
has an area of ~6.7 X 10° m2. The tida] range is ~1.1 m at
the mouth of the creek (Fig. 3b: E2);'2 ki upstream, the
range is ~0.6 m (Fig. 3b: E3). The closest major river is the
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Fig. 2. Reservoir compositions and process trends. Today, at-
mospheric A¥C and 8“C values are about +125%0 and —7.5%,
respectively. Surface seawater A“C is about 4+90%c—100%o; sea-
water 8C is 0%0-1%o. Living vegetation incorporates the high at-
mospheric A*C values and will have 8“C values reflective of the
photosynthetic pathway used (—10%o to —15%. for C, plants;-
—25%o to —30%o for C, plants). Root respiration CO, will have a
8°C composition similar to that of the total plant material (Deines
1980) and a high A**C value. CO, produced by microbial decom-
position of soil/sediment organic matter will reflect the A“C and
8"C values of the source material (Keller and Bacon 1998). Car-
bonate rocks have high 8"C values, reflecting the seawater §C
values of formation (0%1%0) and are radiocarbon-free (AMC =
= 1000%o), so that groundwater flowing through carbonate rock will
develop low A“C and high §"°C values through dissolution and ion
exchange. Ancient organic material, such as peat, will also be ra-
diocarbon-free but will have §°C values similar to the plant material
of origin (—25%0 to —30%o).

Northeast Cape Fear River, which feeds into the Cape Fear
River below Wilmington and drains into Long Bay south of
Cape Fear (Fig. 3a). Freshwater inputs to the Pages Creek
estuary consist of a few small streams (recharged by local
precipitation and by groundwater), a number of artesian
springs, and most likely diffuse seepage of unconfined
groundwater directly into the creek.

Methods

Sample collection—OQur isotopic mass balance approach
requires the quantification of the DIC concentration, DIC
isotopic values (8"°C and A“C), and salinity of the primary
water inputs to the estuary system. The primary DIC inputs
to the Pages Creek estuary are (1) confined groundwater (as
artesian springs), (2) fresh surficial waters (including both
freshwater streams and discharge from the water table aqui-
fer), (3) seawater entering the Pages Creek estuary through
the ICW, and (4) salt marsh DIC input; the primary output
is water flowing out to the ICW at low tide (5) (Fig. 4). Our
sampling plan in Pages Creek was designed to constrain
these end-member input compositions and to monitor chang-
es in DIC, DIC isotopes, and salinity within the estuary-
through a tidal cycle. :

River, estuary, and spring A“C, 8“C, DIC, titration al-
kalinity (TA), and salinity samples were collected by sub- °
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Fig. 3. Wilmington/Cape Fear region with sample locations, with
detail of Pages Creck and Middle Sound sample locations.

merging and manually tripping a 5-liter Niskin bottle; where
the water column was deep enough (all river, inlet, high-tide
ICW, and high tide Pages Creek mouth samples), the Niskin
was held vertically with its top at 0.25-0.5 cm below the
water surface. Shallow-water column safnples were collected
by holding the Niskin horizontally under the water surface.
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Fig. 4. Conceptual mode! of DIC inputs and outputs to the Pages
Creek estuary. As discussed in the text, DIC inputs to Pages Creck
are springs (1), streams (2), inflowing ICW water (3), and net ex-
change with salt marsh (4). The primary DIC output is water flow-
ing out of the estuary at low tide (5). Gas evasion and photosyn-
thesis do not affect the DIC A"C of the outflow.
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Streams

April 2001 stream samples were collected with a manual
bilge pump.

Fifteen stations within Pages Creek, Mason Inlet, and Rich
Inlet were sampled in July 1997, November 1999, July 2000,
and April 2001 (Fig. 3b; Table 1). Sta. E2, near the mouth
of the creek, was sampled to monitor the change in chemical
composition of the water before low tide and before high
tide in November 1999, July 2000, and April 2001. Stations
from the inlets connecting the ICW with Onslow Bay were
sampled to assess the isotopic composition of DIC derived
from salt marsh decomposition processes.

Spring samples were collected at Sta. E7 in July 1997,
November 1999, and July 2000. This spring discharges in a
0.5-m diameter pockmark that is fully exposed at low tide
and is swept free of fine sediment by the artesian flow.
Freshwater stream samples were collected at Sta. 8a in No-
vember 1999 and Sta. 8b in July 2000 and April 2001.

Groundwater samples from the coastal Cape Fear region
were collected to document the spatial variability of ground-
water DIC and DIC isotopic values. Samples from monitor-
ing wells screeped in the surficial, Castle Hayne, and the
underlying Peedee aquifers were collected in July 1997 and
July 2000 using a submersible pump, after first pumping out
three well volumes to flush the wells (Table 2, Fig. 3a,b).

We sampled several rivers in southeastern North Carolina
to provide a regional estimate of surface freshwater DIC
composition (Table 3, Fig. 3a). Surface (<0.25 m) and bot-
tom waters (30 m) in Onslow Bay were collected by divers
in July 1997 at two sites located 20 km offshore (Table 3;
Fig. 3a).

Sample analysis—Water samples for carbon isotopic anal-
yses (DIC, §2C, and A*C) were collected, unfiltered, in 500-
ml glass bottles with greased ground-glass stoppers and poi-
soned with 100 pl of saturated HgCl,, except as noted in
Tables 1-3. Carbon isotopic and DIC analyses were con-
ducted at the National Ocean Sciences Accelerator Mass
Spectrometer facility in Woods Hole, Massachusetts. The
precision for the AC analyses is *5%q; for 8°C, £0.1%o,
and for DIC, +3%.

April 2001 alkalinity samples were titrated using a poten-
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Table 1. Pages Creek estuary salinity, dissolved inorganic carbon (DIC), A%C, §°C, and titration alkalinity (TA) values.

Map DIC A nC 8mC TA*

Pages Creek estuary samples legend Date Salinity  (mmol kg*) (%0) (%o) (meq L")
Pages Creek mouth: high tide E2 Nov 99 31.200 2.237 +0.3 —1.43 t
Pages Creek mouth: high tide El Jul 00 32.985 2175 +38.3 —1.08 2.30
Pages Creek mouth: high tide E2 Apr 01 34,728 2.368 +39.1 -0.78 249
Pages Creek mouth: high tide E2 Apr 01 34778 2.363 +40.0 —0.84 249
Pages Creek mouth: fow tide E2 Nov 99 27.900 2.562 -78.4 —2.18 1
Pages Creek mouth: low tide E2 Jul 00 21.299 1.899 +9.3 =377 1.82
Pages Creek mouth: low tide E2 Apr 01 32.401 2.463 -10.0 -1.89 2.56
Pages Creek mouth: low tide - E2 Apr 01 33.870 2439 +27.9 -1.30 2.51
2.1 km upstream, high tide E3 Jul 00 30.278 2.066 +54.4 -1.30 212
2.1 km upstream, low tide E3 Jul 00 14.616 1.671 -12.7 -5.92 1.58
3.2 km upstream, rising tide E4 Jul 00 16.544 1.661 +16.5 -4.77 1.52
Salt marsh ES Jul 00 33.133 2.146 +47.1 -0.79 220
Salt marsh E5 Jul 00 21.818 1.933 +20.5 -3.56 1.88
Salt marsh E6 Jul 00 30.574 2.103 +433 -132 220
Pages Creek spring E7 Jut 97 t 4.470 -396.7 -11.53 3.79
Pages Creek spring 1 E7 Nov 99 0.200 4.464 —385.5 —11.36 1
Pages Creek spring .2 E7 Nov 99 0.200 4.485 —406.4 -11.16 t
Pages Creek spring 1 E7 Jul 00 1.189 4.192 —376.6 -11.17 348
Pages Creek spring 2 E7 Jul 00 0.526 4.432 —403.2 -11.23 3.66
P.C.} stream: Bayshore Rd E8a Nov 99 0.000 0.866 -79.4 -13.19 t
PC. stream: Bayshore Rd E8b Jul 00 0.189 1.645 -162.3 -12.22 1.44
PC. stream: Bayshore Rd§ E8b Apr 01 0.164 1.452 —126.6 —12.63 1.14
PC. stream: Furtado Rd§ E13 Apr 01 0.177 2.860 -176.5 —11.25 243
PC. stream: Porters Neck Rd§ El4 Apr 01 0.142 1.271 -191.8 —12.56 1.07
Non-PC. stream: Sidebury Rd§ E15 Apr 01 0.067 0.746 —-109.5 —14.08 047
Inlet samples

Mason Inlet: HT El2 Nov 99 34.400 2.043 +59.3 +0.17 t

Rich Inlet: HT El10 Jul 00 31.121 2.067 +39.5 -0.78 2.12

Mason Inlet: LT E12 Nov 99 34.300 2.073 +57.9 +0.03 +

Rich Inlet: LT E9 Jul 00 31.329 2.011 +38.6 -0.67 1

Middle Sound salt marsh Ell Jul 00 32.625 2.182 +64.8 -0.89 240

* All estuary alkalinity samples were unfiltered.
} No measurement taken.

1 PC. = Pages Creek: indicates streams draining into the Pages Creek estuary.
§ April 2001 streams were sampled with a manual bilge pump into 500-m! glass bottles and were poisoned with 100 u! of saturated HgCl,.

tiometric closed-cell titration system with a precision of
0.2%. July 2000 alkalinity samples were analyzed immedi-
ately in the field using a manual titration method (Wood
1976), with a precision of 1%. November 1999 and July
1997 alkalinity was determined by the Gran function titra-
tion method, to a precision of 0.5%.

Salinity samples for July 2000 and April 2001 ground-
water, river, and estuary stations were analyzed by the hy-
drographic facility in the Physical Oceanography department
at Woods Hole Oceanographic Institution with a precision
better than +£0.01 ppt. November 1999 salinity values were
estimated using a hand-held salinometer.

Results

The primary water sources to the Pages Creek estuary
include groundwater inputs from the three shallowest aqui-
fers in the region (the surficial, Castle Hayne, and Peedee
aquifers), freshwater streams and rivers, and shelf waters that
enter the estuary through the ICW.

Groundwater and springs—In general, surficial ground-
water samples have much higher A*C values than the Castle
Hayne and Peedee groundwater samples (Table 2; Fig. 5).
The 6°C values of the Castle Hayne and Peedee aquifers
are similar to each other and are higher than those of the
surficial aquifer samples. DIC and TA values also tend to
increase with increasing depth. Salinity for most ground-
water samples was <1, with the exception of two of the
deepest wells.

Surficial groundwater—Surficial groundwater AC val-
ues are generally higher than deeper groundwater A“C, rang-
ing from about +18%o to about +88%. (Table 2; Fig. 5).
The range in 8°C values (~15%o to —27%0) for surficial
groundwater is large, and these values tend to be lower than
the 8"C values from deeper aquifers. DIC values for surficial
groundwater samples (~1.3-1.6 mmol kg-') are generally
low relative to deeper groundwater samples. Titration alka-
linity is low for all surficial samples (~0.04 meq L' to ~1.0
meq L™"). Two wells screened in the surficial aquifer, Cal-
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Table 2. Gfoundwater salinity, dissolved inorganic carbon (DIC), AMC, 8°C, and titration alkalinity (TA) values.

Screened
interval DIC
Map (m below {mmol AMC 8uC TA%
Well sample* Date legend  Aquifert  surface)  Salinity kg~ (%o) (%0) (meg L)

- Boiling Spring Jul 00 Gl S 34 0.069 3.256 +88.4 -22.84 0.24
Fort Fisher State Park Jul 00 G2 S 2-3 0.280 § +36.6 —-19.36 1.08

Southport RS4 Jul 00 G3 S 3-6 0.100 1.465 +77.1 -23.03 024

Sunset Harbor Jul 00 G4 S 3-5 0.067 0.922 +41.1 ~26.89 0.04

" Topsail Beach Jul 00 G5 S 35 0.107 1.631 —407.9 —15.82 0.99
Wilmington Airport Jul 00 G6 S 2-4 0.076 1.338 +18.4 —-15.12 0.28

Calabash Jul 00 G7 S/Lt 14-17 0.309 § -396.9 -12.99 422

NENHC S1 Jul 00 G8 CHY 9-12 0.294 2.138 -281.8 —15.36 1.52

NENHC S2 Jul 00 G9 CHY 13-17 0.249 2.974 —-413.8 ~12.86 2.68

NENHC S3 Jul 00 G10 CHY 9-11 0.895 5.104 -330.9 -13.61 4.54

Deppe Jul 97 Git S/LT 27-31 - § 7.990 —556.8 -12.30 6.63

Chingapin Jul 97 GI12 CH 31-49 § 5.030 —520.9 -1231 3.88

Comfort Jul 97 Gl13 CH 8-18 - § 3.850 —498.7 ~11.78 343

Dixon Tower/Folkstone Jul 97 Gl4 CH 46-73 H] 4.380 ~748.1 -11.97 4.06

Southport RS4 Jul 00 G3 CH 20-23 0.235 4.864 -472.6 -11.59 342

‘Sunset Harbor Jul 00 G4 S/Lt 26-31 0.108 1.796 -576.8 —-11.80 1.35
Boiling Spring Jul 00 Gl S/PD| 20-46 0.317 7.110 —653.3 -11.25 4.86

NENHC b1 Jul 00 G8 PD 50-55 0410 6.426 —770.2 -10.95 5.64

NENHC D2 Jul 00 G9 PD 50-58 1.461 6.991 -821.9 —12.03 5.90

NENHC D3 Jul 00 G10 PD 47-52 0.777 6.439 -829.2 -1267 - 5.52

Shallotte Jul 00 G15 PD 18-21 0.243 § -548.0 —-9.85 3.76

Southport RS4 Jul 00 G3 PD 29-61 0.293 § —-786.9 —11.88 344

Sunset Harbor Jul 00 G4 S/PD** 95-98 3.757 $§ ~998.1 —4.65 7.68

* All monitoring wells installed and maintained by the North Carolina Department of Environment and Natura! Resources (NC-DENR) (http://
www.dwr.ehnr.state.nc.us/), except the NENHC wells, installed and maintained by the Northeast New Hanover Conservancy (NENHC).

+ NC-DENR aquifer assignment (unless otherwise noted): S, surficial; CH, Castle Hayne; PD, Peedec. Our S/L designation indicates wells listed as surficial
by NC-DNER (based on absence of a confining unit) but where well lithology shows the presence of a limestone unit. At Deppe this may be the Castle
Hayne.

§ All grot alkalinity ples were filtered, except the Wilmington Airport surficial aquifer sample.
§ No measurement taken.
9 Roberts 2002.

|| Screened interval crosses the Peedee confining unit.
** Peedee lithostratigraphy in deep surficial aquifer.

abash and Topsail Beach, have much lower A“C values
(—396.9%0 and —407.9%o., respectively) than the other sur-
ficial wells. However, the relatively high 8'*C values, as well
as the presence of shell fragments and carbonaceous sand,
respectively (as described in NC-DENR borehole logs for
these two wells) suggest the possibility of carbonate disso-
lution or isotopic exchange with shell material.

Castle Hayne groundwater—Groundwater samples la-
beled Castle Hayne in Table 2 were collected from wells
screened only in the Castle Hayne aquifer, where NC-DENR
borehole logs indicate the presence of a confining layer sep-
arating it from the surficial aquifer. These wells are generally
low in AMC, but the values are spatially variable (—473%0
to ~748%o) (Table 2; Fig. 5). The range in 8°C values is
small, from —11.6%0 to —12.3%c. DIC and TA values for
most Castle Hayne wells are high, with DIC values ranging
from ~3.8 to 8.0 mmol kg-!, and TA values ranging from
3.4 to 6.6 meq L',

The groundwater samples closest to the Pages Creek es-
tuary are the NENHC Porters Neck wells (Fig. 3b). The
three shallow wells from these sites are screened in a car-
bonate unit that has been designated as the Castle Hayne
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(Roberts 2002). However, these wells have higher AMC and
lower 8C values (—282%o to —414%0 and —12.7%0 to
—15.8%o, respectively) than other Cape Fear region Castle’
Hayne samples (Fig. 5). We suspect that this reflects local
leakage of surficial groundwater down through the Castle
Hayne confining unit.

Peedee groundwater—Wells screened in the Peedee aqui-
fer have low AMC values—generally lower than Castle
Hayne wells but with some overlap (—548%o to —998%o)
(Table 2; Fig. 5). The 8“C values of the Peedee wells are
similar to the Castle Hayne wells (—9.9%o to —12.7%o), with
one higher value (—4.7%). Peedee wells generally had the
highest DIC values (6.4-7.1 mmol kg~!) and the highest TA
values (3.4-7.7 meq L1) of all groundwater samples.

Pages Creek spring—The Pages Creck spring samples
have essentially constant A*C and 8°C values over a 3-yr
sampling period (Table 1; Fig. 5). There is also a strong
chemical and isotopic similarity between the spring samples
and the Castle Hayne wells.

Surface freshwaters—We used two sets of samples to de-
fine the likely range of chemical and isotopic values for sur-
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Table 3. A“C, 8“C, DIC, TA, and salinity values for river and Onslow Bay mid-shelf samples.

DiCc TA*
Surface water samples Map legend Date Salinity (mmol kg~") A“C (%0) 88C (%o) (meq L)
Onslow Bay shelf waters
Chapel bottom water 1% S2 Jul 97 1 2.19 +83.9 +1.13 k4
Chapel bottom water 2 S2 Jul 97 b 2.15 +90.5 +1.15 i
Chape! bottom water 3 S2 Jul 97 b4 2.06 +96.8 +1.20 252
Chapel bottom water 4 S2 Jul 97 } 2.07 +80.1 +1.21 2.56
Chapel surface water 1 S2 Jul 97 1 2.02 +92.5 +1.03 2.59
Chapel surface water 2 S2 Jul 97 i 2.03 +95.2 +1.03 2.58
Rass bottom water 1 - 81 Jul 97 - i 2.22 +90.3 +1.17 k3
Rass bottom water 2 S1 Jul 97 b4 2.25 +91.1 +1.22 k4
River samples
NECFR§ Sta. 1 R1 Jut 00 11.923 1.279 +27.3 ~8.34 1.12
NECEFR Sta. 1 R1 Apr 01 5.758 0.804 +39.5 -8.39 0.64
NECFR Sta. 2 R2 Jul 00 0.154 0.651 -37.6 -15.10 0.56
NECEFR Sta. 2 R2 Apr 01 0.075 0512 +14 -16.66 0.27
NECFR Sta. 3 R3 Jul 00 0.092 0.603 $ —16.35 0.42
NECFR Sta. 3 R3 Apr 01 0.067 0.532 +28.3 -16.70 0.27
NECFR Sta. 4 R4 Jul 97 1 0.82 -92 ~14.06 1.23
NECFR Sta. 4 R4 Jul 00 - 0.082 ¥ ¥ k 0.32
NECFR Sta. 4 R4 Apr 01 0.078 0.641 -0.1 -13.73 0.45
Black River RS Apr 01 0.047 0.361 +83.5 -17.17 0.15
Cape Fear River R6 Apr 01 0.072 0.537 +99.7 —~11.64 0.37

* All mid-shelf and river alkalinity samples were unfiltered.
+ Mid-shelf A“C samples were collected by hand in 140-m! syringes and filtered through a 0.45-um filter into a 125-m} glass bote, then poisoned with
100 pl of saturated HgCl,. Mid-shelf 5°C and DIC samples were collected by hand in 4-6 10-m! syringes and filtered through a 0.45-pm filter, then

flame-sealed in glass ampules for CO, stripping and DIC analysis.
$ No measurement taken.
§ Northeast Cape Fear River.

face freshwaters in the region—river samples (including the
Northeast Cape Fear, the Cape Fear, and the Black rivers)
and streams that flow directly into the Pages Creek estuary.

Rivers—We sampled both piedmont rivers (the Northeast
Cape Fear and the Cape Fear) and blackwater coastal plain
rivers (the Black River) (Table 3). All three rivers have A¥C
values comparable to most surficial groundwater samples
and much higher than the Castle Hayne and Peedee ground- .
water A“C values.

Pages Creek stream—The primary freshwater stream
feeding into Pages Creek was measured at two slightly dif-
ferent locations. The July 2000 and April 2001 site was ~20
m above a culvert and elevation drop that sets the upstream
limit to saltwater influence in Pages Creek, whereas the No-
vember 1999 sample was collected at a site a few hundred
meters farther upstream. The July 2000 A“C value was con-
siderably lower than the November 1999 value (—162%o vs.
—79%o, respectively), and the §°C value was slightly higher
(—12.2%0 vs. —13.2%0). DIC was also elevated in the July
2000 stream sample relative to November 1999 (1.6 mmol
kg! and 0.9 mmo] kg~'). The April 2001 stream sample
was intermediate between the other two stream samples in
A*C, 8“C, and DIC values (—126.6%0, —12.63%o, and 1.5
mmol kg=') (Table 1; Fig. 6). Three other streams draining
into Pages Creek (sampled only in April 2001) had even
lower A"C values (—176.5%0 to —191.8%).
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Seawater inputs—Onslow Bay shelf waters: The carbon
isotopic values of the Onslow Bay midshelf bottom and sur-
ficial waters, measured in July 1997, plot in a tight cluster
of high A*C values (+80%o to +97%) and high §C values
(+1.03%0 to +1.22%0) (Table 3; Fig. 6). The DIC and TA
values of these waters are also tightly clustered, ranging
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s Lo L @m e °
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e
o
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Fig. 5. AC and 8"C values of groundwater, artesian spring, and
river samples from the Cape Fear region of North Carolina. Peedee
and Castle Hayne groundwaters have much lower A*C than surfi-
cial groundwaters, rivers, and Onslow Bay shelf waters. Wells with
carbon isotopic compositions between Castle Hayne and surficial
aquifer (“‘Castle Hayne-surficial mix”) values may indicate places
where the Castle Hayne confining unit is leaky or absent.
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Fig. 6. A“C and 8°C values of Pages Creek estuary samples at
‘low and high tide. Onslow Bay shelf waters, Mason Inlet (high and
low tide), and Rich Inlet (high and low tide) have high A“C and
8"C values. Samples collected at the mouth of Pages Creek at low
tide in November 1999, July 2000, and April 2001 show the addi-
tion of low-A*C DIC relative to their high tide values.
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from 2.0 to 2.3 mmol kg~! and 2.5 to 2.6 meq L", respec-
tively.

Middle Sound and inlets: The Middle Sound samples at
both high and low tide are chemically similar to Pages Creek
estuary waters on the incoming tide (Table 1; Fig. 6). All
Middle Sound samples have slightly lower A™C and 8“C
values than the Onslow Bay shelf waters. Mason Inlet and
Rich Inlet do not show large changes in isotopic composi-
tion, DIC, TA, or salinity within a tidal cycle. Tidal varia-
tions in A™C, 8C, DIC, and TA at Mason Inlet (November
1999) and Rich Inlet (July 2000) were all within analytical
precision. Variations in AC,” §°C, DIC, TA, and salinity
through a tidal cycle at Rich Inlet in July 2000 were equally
small.

Inflow/outflow estuary samples: In November 1999 the
outflow (low tide) salinity at the mouth of Pages Creek was
about 10% lower than the high tide inflow (27.9 vs. 31.2)
(Table 1; Fig. 6). The outflow AC (~78%.) was substantially
lower than the inflow value (4+0.3%o) and the outflow §°C
value (~2.2%¢) was lower than the inflow value (-1.4%o).
From high to low tide, the DIC at the mouth of the creek
increased from 2.2 mmol kg~! to 2.6 mmol kg~!.

In July 2000, the change in salinity from high tide to low
tide was larger (a drop from 33 to 21), but the difference in
A“C values between high and low tide at the mouth was
smaller, with A4C = +38.3%o at high tide compared with
+9.3%o0 at low tide (Table 1; Fig. 6). §°C values dropped
from —1.1%o at high tide to —3.8%. at low tide, and, in
contrast to the increases seen in November 1999 and April
2001, DIC values at the mouth of Pages Creek decreased
from high (2.2 mmol kg~') to low tide (1.9 mmol kg™').

In April 2001, inflowing and outflowing waters were mea-
sured at the mouth of Pages Creek on two successive days.
High tide salinity was similar on both days (34.7 and 34.8).
However, low-tide salinity was lower on the first day (32.4)
than the second (33.9), which presumably reflects a sampling
time closer to full low tide on the first day. Both A“C values
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at high tide are nearly identical (+39.1%0 and +40.0%0), but
the day showing greater change in salinity has a much lower
AMC value at low tide (—10%0 compared with +27.9%o).
The low-tide samples also show corresponding drops in 8*C
and increases in DIC on both days (Table 1; Fig. 6).

Discussion

Castle Hayne and Peedee groundwaters have much lower

~ A™C values than the other sources of DIC to the Pages Creek

estuary: surface seawater (including shelf water, the ICW,
and inflow to Pages Creek at high tide), surficial ground-
water, and freshwater streams (Figs. 5, 6). Earlier, we
showed that DIC removal processes such as gas evasion and
photosynthesis do not influence DIC AMC values. If we can
be confident that there are no other sources of low-A“C DIC
to the system, then the DIC and DIC carbon isotopic values
of the primary water input end members (inflowing ICW
water, artesian springs, and freshwater streams) (Fig. 4) can
be used to construct three-component mixing models to de-
termine the relative importance of low-A"C artesian dis-
charge to the freshwater budget of the Pages Creek estuary.

Estuary DIC inputs—Salt marsh DIC inputs: Plant respi-
ration and microbial decomposition of organic matter in salt
marshes can be a significant part of estuarine carbon budgets
(Hopkinson 1985; Cai and Wang 1998). However, respira-
tion and decomposition in salt marsh sediments is likely to
be dominated by relatively recent organic matter. If so, DIC
inputs due to decomposition will have high A“C values, sim-
ilar to those of surface seawater and surficial groundwater,
and they will not lead to overestimates of the artesian con-
tribution to freshwater inputs.

We collected several low-tide samples from salt marshes
within Pages Creek (Table 1). However, the low salinities of
these samples show that they contain a significant freshwater
component derived from streams and/or springs and thus do
not reflect salt marsh decomposition processes alone.

We have only one set of samples from a salt marsh un-
affected by known freshwater inputs: the E9-E11 samples
from Middle Sound, just east (offshore) of the ICW. The
tidal creek outflow (low tide) salinity is slightly higher than
the inflow ‘(high tide) salinity, perhaps because of evapo-
transpiration in the marsh. The outflowing tidal creek sample
has a higher DIC, lower 8°C, and higher A*C than the in-
flowing water from Rich Inlet at high tide. Thus there is DIC
and 83C evidence of a DIC input from salt marsh decom-
position but no indication of a low-A"C DIC signature as-
sociated with this input. This is encouraging, although we
note that the magnitude of any salt marsh DIC impact on
the initial spring-stream-seawater mixture will be dependent
on both the initial composition of the estuarine DIC (con-
centration and A™C) and on the amount and A*C of the salt
marsh DIC additions. For now we will assume that salt
marsh decomposition adds high-A“C DIC to Pages Creek,
but this assumption still awaits a definitive test.

Artesian inflow: We use the observed Pages Creek spring
DIC concentration and DIC isotopic values in our mixing
calculations (below). The 4-yr consistency of DIC, §°C, and
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A¥C values in the Pages Creek spring suggests that its
source composition is not highly variable. This lack of tem-
poral variability further implies little mixing of the spring
source with surficial groundwater, because such mixing is
unlikely to be constant. Well head data from the Porters
Neck limestone-screened wells suggest that the potentio-
metric surface of the shallowest confined aquifer is close to
sea level, and borehole data from these wells suggest that
the confining unit is very close (within a few meters) to the

" land surface. Therefore, this artesian spring may be the result

of either a localized fault through the confining unit, or, per-
haps more likely, the creek may have incised through the
confining unit to the underlying aquifer.

Tidal creeks cutting through to this confined aquifer may
not be an unusual occurrence in this area: there are several
known springs in a neighboring creek, Futch Creek (Fig. 3b),
and preliminary data from Futch Creek suggest that artesian
inputs are significant to its freshwater budget. If so, such
incised channels (cut through the exposed shelf at times of
low sea level) may serve not only as high-conductivity off-
shore conduits for surficial groundwater but as foci for sub-
marine groundwater discharge (A. Mulligan unpubl.).

Freshwater stream inflow: The carbon isotopic composi-
tion of the freshwater stream varies, but in November 1999,
July 2000, and April 2001 the stream had lower A“C values
than surficial groundwater. These low A*C values suggest
that the stream is fed by some combination of artesian and
surficial groundwater. For our mixing models, we will dis-
tinguish artesian inputs that discharge directly into the es-
tuary from those that discharge elsewhere in the watershed
and will therefore use the measured carbon isotopic com-
position of the stream as an end member in our mixing cal-
culations. Because we expect surficial groundwater to have
high A“C and low 86°C (Fig. 5; Table 2), our calculations
of the artesian fraction of the total freshwater inputs will
therefore be minimum estimates.

Mixing models—We show three—end-member mixing

models for three sampling periods—November 1999, July
2000, and April 2001—plotted with the Pages Creek outflow
composition in each season (Figs. 7a,b, 8a—f, 9a—). The
mixing models are constructed based on the measured DIC
concentrations and DIC isotopic compositions of the three
input end members, using the following equation (for sea-
water-spring-stream AC- and 8"C-DIC mixing, where SW
denotes seawater and X, ¥, and Z are assumed fractions for
each end member):

AMC,, = [(Xgw X TCO, 5y X AMC,,)
+ (Youg X TCO, g X AMC, 0.
+ Zaram X TCO, i X AMC,_)]
+ [Xsw X TCOpqy) + (Y?.,,i,,g X TCO, i)
+ Zoeam X TCO, rear)] @
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Fig. 7. November 1999 DIC concentration-isotope mixing curves
among three Pages Creek estuary input sources: inflow from the
ICW at high tide, freshwater stream input, and artesian groundwa-
ter/spring input. (a) DIC-6"C end-member mixing. (b) DIC-A*C
end-member mixing. Analytical precision for each graph is approx-
imated by symbol size. The observed outflow DIC concentration
and isotopic compositions are also shown (open squares). The open
circles show the two-end member—only mixtures (inflow-stream
and inflow-spring) predicted by the observed inflow-outflow salinity
difference. As discussed in the text, these salinity-based predictions
confirm the results of our DIC concentration-isotope mixing model.

8Crix = [(Xew X TCO, 5 X 8°Cgy)
+ (Yopring X TCO, g X 8C,0y)
+ @ X TCO, gam X 85C )]
+ [Ksw X TCO,59) + (Yopsng X TCO, t00)

+ Zrean X TCO, geam)] o

We use salinity to determine the seawater input fraction to
the Pages Creek estuary and the observed AMC value of the
outflow to partition between stream and spring freshwater
inputs. Finally, we assess the impact of DIC inputs from salt
marsh decomposition on our A“C-based SGD estimates.

End-member mixing model, November 1999: Two-com-
ponent mixtures of waters having different DIC concentra-
tions yield curved mixing lines on isotope-concentration
plots (Fig. 7a,b). The spring and stream §'3C values are sim-
ilar (Fig. 7a) and would not permit us to distinguish between
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Fig. 8. (a,b) Salt marsh DIC additions (§°°C = —12%0 to ~20%0; AMC = +25%o to +100%o) to
an inflow-stream mixture cannot match the outflow composition. (c,d) Salt marsh DIC input to an
inflow-stream mixture plus DIC loss via photosynthesis (¢ = 20%) and gas evasion (¢ = 10%o)
still cannot match Outflow A™C. (e,f) Only salt marsh inputs to and DIC loss (via photosynthesis

- and gas evasion) from an inflow-spring mixture can approach the observed outflow A“C.

artesian and surficial groundwater even if there were n6 §°°C
fractionation effects due to photosynthesis, respiration, or
CO, gas evasion. The A*C value of the spring is, however,
distinct from both the ICW inflow A*C and the stream A“C
(Fig. 7b). The composition of water flowing out of the Pages
Creek estuary at low tide, also plotted on these graphs
(“Outflow DIC”), is most closely matched by a mixture of
inflowing water from the ICW and spring-derived freshwa-
ter, with little or no stream contribution.

The outflowing water at the mouth of the Pages Creek
estuary in November 1999 was 10% fresher than the inflow
from the ICW. If we calculate a mixture of 10% freshwater
(all from artesian springs) and 90% ICW water, the A*C and
DIC values of the calculated result plot very close to the
A¥C and DIC values of the actual outflow from Pages Creek
(Fig. 7b). Thus, our salinity measurements provide a useful
cross-check of the estimates of artesian input to the Pages
Creck estuary determined by the A“C-DIC mixing model
and give support to the premise that biological carbon cy-
cling is not a major controlling factor in the A“C budget of
this estuary.

Regardless, it is important to assess the potential impact
of respiration, photosynthesis, and gas‘evasion on this inter-
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pretation of the data, because the composition of the No-
vember 1999 outflow falls outside the mixing triangles, in-
dicating that other processes may be influencing outflow
DIC isotopic composition. We first consider the possibility
of matching the November 1999 outflow chemistry through
some combination of respiration, photosynthesis, and gas
evasion, applied to an inflow/stream mixture with no spring
input (Fig. 8a,b). The solid arrows show the predicted DIC
concentrations and carbon isotopic compositions for DIC ad-
ditions to the 10% freshwater point on the inflow-stream
mixing line, for respiration CO, with 8°°C values of ~12%.
and —20%oc and respiration AC values of +25%c and
+100%o. The range of respiration 8C values is chosen to
represent the types of vegetation in the estuary, from Spar-
tina marsh grass (§°C = —12%o) to marine organic matter
(8°C = —20%o). As discussed above, we believe that rela-
tively high A“C values are appropriate for salt marsh—de-
rived DIC, because the A%C values of atmospheric CO, have
been higher than +100%o since the 1950s, as a result of
atmospheric testing of nuclear weapons in the 1950s and
1960s.

An acceptable fit to the outflow 8°C value can be obtained
if salt marsh respiration CO, (§°C = —12%. and AMC =



MC estimates of groundwater discharge

+25%0) is added to a 10% freshwater mixture along the
inflow-stream mixing line and DIC is then removed via pho-
tosynthesis or gas evasion (under the assumption of an en-
richment factor (g) greater than or equal to —20 for photo-
synthesis and greater than or equal to —10 for gas evasion)
(Fig. 8c,d). However, removal of CO, via photosynthesis or
gas evasion from this mixture leaves the A“C value essen-
tially unchanged at +5%o; it does not improve the match to
the low outflow A*C value. We note that these DIC addition
and loss calculations are not based on measured fluxes. They
simply show that it is possible to match the observed DIC
and 8"°C values without an artesian contribution to the fresh-
water budget. However, no combination of inputs and re-
moval of modern (high A*C) DIC alone can match the ob-
served outflow AC values. Only if the 10% freshwater is
derived entirely from the spring is it possible to approach
the observed outflow A“C (Fig. 8e,f).

The mismatch between the model predictions and the ob-
served outflow composition may be merely a function of end-
member choice. If additional springs with higher DIC con-
centrations or higher A“C values discharge into the Pages
Creek estuary or if the high tide inflow composition had high-
er DIC or A*C values than our ICW inflow sample, the mix-
ing triangle would stretch to encompass the outflow DIC com-
position. In either case, though, the freshwater component of
the outflow DIC composition at low tide in November 1999
would still be dominated by artesian spring input.

End-member mixing model, July 2000: A similar end-
member mixing triangle for Pages Creek in July 2000 is
shown in Fig. 9a. The data suggest that nearly all freshwater
input to the Pages Creek estuary in July 2000 was fro
stream flow rather than spring discharge. - :

The DIC A“C value of the July 2000 inflow stream sam-
ple is quite low. We suspect that this reflects spring discharge
in the stream watershed. Using the observed July 2000
stream composition therefore gives us a minimum estimate
of the fractional contribution of artesian flow to the Pages
Creek estuary freshwater budget. However, even if we used
the November 1999 stream composition to interpret the July
2000 outflow data, we would conclude that in July 2000 the
freshwater inputs were predominantly stream-derived, with
artesian inputs <10% of the total freshwater input. This re-
sult stands in sharp contrast to the situation in November
1999 (Fig. 9b).

End-member mixing model, April 2001: In April 2001,
we sampled inflow and outflow at the mouth of Pages Creck
on two successive days. These are plotted with the end-mem-
ber mixing triangles (Fig. 9¢c). We use the July 2000 spring
composition to construct the mixing model because no
spring sample was collected in April 2001; the high consis-
tency of the chemical composition of the spring samples in
previous sampling periods makes this a realistic assumption.

- The stream end-member DIC composition is the average

composition of the measured stream inputs into Pages Creek
in April 2001.

As in November 1999, these data suggest that in April
2001 nearly all the freshwater input to Pages Creek was from
spring discharge. The salinity decrease from high to low tide
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Fig. 9. DIC-DIC isotope mixing curves: (a) July 2000 DIC-A*C
mixing, suggesting that stream inputs were the dominant source of
freshwater to Pages Creek at low tide in July 2000. (b) July 2000
end-member mixing triangle with November 1999 stream compo-
sition (higher A'C and lower 8"°C values than July 2000 stream).
When we used the November 1999 stream composition to interpret
the July 2000 outflow data, the freshwater inputs in July 2000 still
appeared to be predominantly stream-derived. (c) April 2001 DIC-
AM"C mixing, suggesting that artesian spring inputs were the dom-
inant source of freshwater to Pages Creek at low tide in April 2001.

was <10% on both days, as represented by the open circles
in the graph. In each case, the calculated salt mass balance,
under the assumption of only artesian freshwater input, pro-
duces a DIC composition similar to the outflow composition.

Sensitivity analysis—Even if respiration-derived CO, does
not add low-AMC DIC to the estuary, such DIC additions
will increase the uncertainty in our SGD estimates. To eval-
uate this effect, we calculate changes in the November 1999
A“C and TCO, values as a result of successive salt marsh
DIC additions (Fig. 10). Salt marsh DIC is here assumed to

. have a A“C value of +100%o, representing the respiration

of young organic matter, and a §3C = —12%o, the §°C value
of the dominant vegetation in the marsh, Spartina alternifio-
ra. Additions of high-A“C DIC produce an upward slope in
the DIC addition lines. This slope, combined with the ana-
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Fig. 10. Sensitivity calculations of the impact of salt marsh DIC
_additions to the DIC isotopic composition of Pages Creek at low
tide in November 1999, for varying percentage contributions of ar-
tesian groundwater to the total freshwater input. Total freshwater
input is 10%, based on a salt balance at the mouth of Pages Creek
between high and low tides. The starting point for each line is a
given percentage artesian groundwater contribution to the fresh-
water budget, with increasing additions of respiration DIC trending
to the right. A*C from respiration is assumed to be 100%o. Three-
component mixing mode] estimates of artesian groundwater contri-
bution to the outflowing water (as discussed in the text) suggest that
artesian groundwater makes up 100% of the total freshwater input.
Because of the change in A%C as 2 result of respiration DIC inputs,
the uncertainty of this estimate is about £20%.

lytical uncertainty in the A*C values, yields an uncertainty
in the groundwater fraction of total freshwater of about
+20%. This uncertainty will vary as a function of both the
initial composition of the estuarine water (its DIC concen-
tration and A*C) and the A*C of the added DIC. The greater
the *C difference between DIC and added carbon, the steep-
er the A¥C-DIC addition lines and the greater the uncertainty
in the final SGD estimate. This highlights the importance of
determining the A*C signature of salt marsh decomposition.

Seasonal change in relative artesian ground-/streamwater
contributions to Pages Creek—On the basis of the mixing
models described above, nearly all the freshwater input into
the Pages Creek estuary during our sampling in November
1999 and in April 2001 was low-A'C artesian groundwater.
In July 2000, nearly all freshwater was streamwater. This
change in the relative contributions of ground- and surface
water to the Pages Creck freshwater budget among Novem-
ber 1999, July 2000, and April 2001 may be driven by fac-
tors affecting groundwater flow rates from the springs and/
or by factors affecting total stream input to the estuary.

Changes in the flow rate from springs into the estuary
presumably reflect changes in the hydraulic head of the
source aquifers. Hydraulic head data from the surficial and
the Castle Hayne aquifers at Topsail Beach showed a drop
of ~1 m in head for both aquifers between November 1999
and July 2000. This summer-drawdown, possibly a conse-
quence of groundwater pumping in the Castle Hayne aquifer
and of both high summertime evapotranspiration and pump-
ing in the surficial aquifer, may affect the groundwater flow
rate from springs. However, a correlation of Pages Creek
spring flow to Topsail Beach well-head data was less appar-
ent for April 2001 (spring-dominated), when head levels
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Fig. 11. Precipitation measured at the Wilmington airport (20 km
northwest of Pages Creek; precipitation data provided by the State
Climate Office of North Carolina at NC State University) for several
time periods prior to sampling in November 1999, July 2000, and
April 2001. Changes in the relative amount of stream flow may be
the result of either seasonal or event-driven changes in precipitation.
There was little difference between total precipitation for the 4
weeks prior to our November 1999 Pages Creek estuary sampling
period (spring-dominated) and precipitation for the 4 weeks prior
to July 2000 sampling (stream-dominated). However, rainfall oc-

. curred within 2 days of sampling in July 2000; in November 1999

the last rainfall occurred a2 week prior to sampling. Precipitation
events on a scale of days prior to sampling in the Pages Creek
estuary may determine the change in the relative contributions of
artesian inputs and stream inputs to the Pages Creek freshwater
budget.

were not much higher than they were in July 2000 (stream-
dominated). In addition, although head levels at Topsail
Beach dropped to a 2-yr minimum in November 2001 (after
a long regional drought), the flow rate from the Pages Creek
spring was not visibly decreased. The apparently steady flow
observed from this spring suggests that artesian input into
the Pages Creek estuary is not highly variable. .

We suspect the most likely explanation for changes in the
relative contribution of groundwater to the Pages Creek es-
tuary is precipitation-related variations in stream flow su-
perimposed on background levels of artesian discharge.
Stream input can be affected both by precipitation, on a sea-
sonal or on an event scale, and by seasonal changes in
evapotranspiration rates. Although rainfall in Wilmington is
on average higher in July than in November and April, high-
er rates of evapotranspiration in the summer may prevent
increased precipitation from infiltrating to the surficial aqui-
fer. In the Pages Creek estuary, changes in stream inputs
appear to be more strongly correlated with rainfall events on
short timescales prior to sampling (Fig. 11). There was little
difference in total precipitation between the 4 weeks prior
to the November 1999 sampling period (spring-dominated)
and July 2000 sampling (stream-dominated). However, >12
cm of rain fell within 2 days prior to sampling in July 2000,
whereas in November 1999 the last rainfall (5 cm) occurred
a week prior to our sampling. This suggests that precipitation
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events on a scale of days prior to sampling may control
stream inputs to the Pages Creek estuary, even though the
low A™C value of the Pages Creek stream in July 2000 (rel-
ative to November 1999 and April 2001) indicates that this
stream, at least, is not fed solely by runoff.

We have developed a carbon isotope-based method for
quantifying the artesian component of freshwater inputs to
estuaries and the coastal ocean. Using this method, we ob-
served striking variability in the relative contributions of
stream flow and artesian SGD to the freshwater budget of a
small estuary in coastal North Carolina. Artesian flow dom-
inated the freshwater budget in November 1999 and April
2001, whereas stream flow accounted for all the freshwater
inputs in July 2000. We suspect that this reflects short-term
(1-3 day) increases in stream flow as a result of precipitation
events, superimposed on a more constant artesian discharge.
The chemical consistency (and apparently steady discharge)
of the artesian flow implies that tidal creek channels in this
region have penetrated through the shallowest confining unit
to the underlying aquifer. This suggests that creek channels
(both modern and relict) may act as high-conductivity zones
of direct connection between confined aquifers and coastal
waters.

This carbon isotope—based method offers the advantage of
distinguishing artesian groundwater inputs from surface and
shallow subsurface mnoff and thereby complements other
tracer approaches such as the salinity mass balance. The si-
multaneous study of multiple tracers, each responding to a
different suite of processes, will provide a more comprehen-
sive picture of groundwater discharge into estuaries and the
coastal ocean than can be obtained from any single approach.
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Chapter III. DEVELOPMENT OF THE AC METHOD: DIC-A!*C INPUT VARIABILITY
AND CONSTRAINTS

~ Abstract

In coastal North Carolina, fresh water artesian discharge is characterized by a low
AMC signature acquired from the carbonate aquifer rock, and thus can be used to estimate
the artesian contribution to estuarine freshwater budgets (Gramling et al 2003). In this
chapter, the A™C-based method for estimating the artesian component of the fresh water
input to an estuary is expanded; the generality of the method is tested by applying it to
both the Pages Creek estuary and the Futch Creek estuary, and include new data from
April 2001, November 2001, and April 2002. Application of the A'C method to two
inlets connecting the Intracoastal Waterway near these estuaries with the Atlantic Ocean
suggests that the SGD-derived A*C signal is not strong enough to be recognized in the
inlets, where deviations from seawater composition are small. Additionally,
measurements of salt marsh pore waters demonstrated that organic matter decomposition
in salt marshes does not appear to be a source of low A*C DIC, confirming an
assumption made by Gramling et al (2003).

New spring and stream data from April 2001, November 2001, and April 2002
enable us to make a more rigorous assessment of the variability of the DIC and DIC
isotopic compositions of these inputs to the estuaries. While spring chemistry was highly
consistent through time at each of two spring sites sampled over three years, and spring
A™C values were highly consistent both spatially and temporally, spring DIC
concentrations were variable within a single estuary. In contrast, substantial variability in
stream chemistry was observed with respect to both DIC and A'C values. Spring inputs
dominated the fresh water budgets of both estuaries during April 2001 and April 2002,
and dominated the fresh water budget of the Futch Creek estuary in November 2001. The

AC data suggest that spring inputs provided only 10-50% of the fresh water inputs to
the Pages Creek estuary in November 2001.

Introduction

AM™C-based estimates of artesian inputs into the Pages Creek estuary during three
sampling periods (November 1999, July 2000, and April 2001) were presented in Chapter
II. Here, new data is presented to develop the A'C method, and is expanded to include
new data from the Pages Creek estuary (from November 2001 and April 2002) and from
a neighboring estuary, the Futch Creek estuary (from April 2001, November 2001, and
April 2002). Additionally, spring and stream data from these sampling periods is
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presented, groundwater data from the wells closest to Pages and Futch Creeks, and data
from two inlets connecting the Intracoastal Waterway near these estuaries with the
Atlantic Ocean. Two new aspects of the study are the addition of salt marsh pore water

data and hourly time series in both the Pages and Futch Creek estuaries.

Respiration DIC additions were not measured in Chapter I, but were assumed to
contribute DIC with high A'C, originating from modern organic matter. However,
respiration of older organic matter is a potential source of low-AMC DIC to the estuaries,
which could introduce significant error into estimations of spring inputs. Therefore, this
~ study includes analyses of marsh pore waters to determine the AYC value of DIC added

from respiration in these estuaries.

Methods
Study site

The study site information presented here primarily includes information not
provided in the previous chapter. The geologic and hydrogeologic characteristics of the

Onslow Bay region of southeastern North Carolina are described in Chapter II.

Pages Creek and Futch Creek are small, well-mixed tidal creeks located on the
Intracoastal Waterway (ICW) northeast of Wilmington, NC (Figure 1). The closest
hydraulic connection between this section of the ICW and Onslow Bay are two inlets that

cut through the salt marsh barrier islands, Rich Inlet to the north and Mason Inlet to the

south.

The Pages Creek estuary, including fringing salt marshes that are inundated at
high tide, has an area of about 6.7 x 10° m%. The Futch Creek estuary is about two-thirds
the size of the Pages Creek estuary, with an area of about 4.4 x 10° m?. The Pages Creek
tide range averages about 0.9 meters, while the Futch Creek tide range averages about 0.6
meters. At low tide, the upper creekbeds of both Pages and Futch Creeks are exposed,

even during neap tide.
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Fresh water inputs into each creek consist of several small, intermittent streams
(recharged by local precipitation and by groundwater), artesian springs, and diffuse
groundwater seepage from an unconfined aquifer. In the Pages Creek estuary, one large
spring at the upstream end of the estuary is the most visible and temporally consistent
source of confined groundwater (Figure 1, Table 1), though other smaller and more
temporally variable springs have been observed in the immediate vicinity. In the Futch
Creek estuary at least three large springs have been observed to last for the duration of
the study (Roberts 2002) (Figure 1, Table 1).

Sample collection and analysis

The dissolved inorganic carbon (DIC), titration alkalinity (TA), DIC isotopic, and
salinity samples presented here were collected in April 2001, November 2001, and April
2002. April 2001 samples were collected about one week prior to the spring tide.
November 2001 samples were collected before, during, and after the spring tide. April
2002 samples were collected during neap tide. Estuary samples were collected in two
ways: in high tide/low tide pairs (just prior to full high or full low tide), and in time
series: every hour for a full 12-hour tidal cycle. The primary goal of time series
sampling was to determine whether sampling twice during a tidal cycle (in high tide/low
tide pairs) is sufficient to capture the full range of tidal variations in DIC chemistry
observed in the estuaries. High tide/low tide pairs were collected from the Pages and
Futch Creek estuaries in April 2001, November 2001, and April 2002. Time series data
were collected from the Pages Creek estuary in November 2001 and April 2002, and
from the Futch Creek estuary in April 2002. All estuary samples were collected just
inside the mouth of each creek (Figure 1, Table 1).

To consider how estuarine tracer fluxes might impact the coastal ocean, and to
determine how strongly our AMC tracer signals persist when integrated with signals from
other neighboring creeks and salt marshes, samples were collected in high tide/low tide

pairs from Rich Inlet and Mason Inlet (Figure 1). High and low tide samples were
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collected both at the mouth of each inlet (where the inlet connects to Onslow Bay), and

also where the inlet connects to the ICW (Table 1).

Samples were also collected from the primary fresh water inputs to each creek: a
large spring discharging directly into the Pages Creek estuary (also sampled during the
November 1999, July 2000, and April 2001 collection periods discussed by Gramling et
al (2003)), a spring discharging directly into the Futch Creek estuary, and fresh water

streams flowing into each estuary (Figure 1, Table 1).

Groundwater samples from monitoring wells screened in the surficial, Castle
Hayne and the underlying Peedee aquifers were collected in July 2000 and April 2002.
July 2000 wells (including both surficial and Northeast New Hanover Conservancy
(NENHC) wells) were sampled as described in Chapter II. April 2002 groundwater
samples were collected only from the six Porters Neck Road NENHC wells closest to
Pages and Futch Creeks, including three Castle Hayne-screened wells and three Peedee-

screened wells (Figure 1, Table 1).
AMC and salinity sampling and analysis

Estuary and inlet DIC, DIC isotopic, and salinity samples, and the November
1999 and July 2000 stream samples, were collected by submerging and manually tripping
a 5-liter Niskin bottle; where the water column was deep enough (all high tide estuary
samples, and Pages Creek estuary low tide samples), the Niskin was held vertically with
its top at 0.25 cm to 0.5 cm below the water surface. Shallow water column samples

were collected by holding the Niskin horizontally under the water surface.

April 2001, November 2001, and April 2002 stream and spring AMC and salinity
samples were collected with a manual bilge pump, holding the top of the hose 0.25 cm to
0.5 cm below the water surface, with the exception of the November 2001 Pages Creek
spring sample, collected by holding the Niskin horizontally under the water surface. All
samples were unfiltered, except the April 2002 spring and stream samples, which were
filtered through a 1-um filter. July 2000 and April 2002 groundwater samples were

collected by submersible pump, after pumping three well volumes to flush the wells.
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Water samples for all $>C and A'C values, as well as the July 2000 DIC
concentrations, were collected in 500 ml glass bottles with greased ground-glass stoppers
and poisoned with 100 pl of saturated HgCl,. A'C analyses were conducted at the
National Ocean Sciences Accelerator Mass Spectrometer (NOS-AMS) facility in Woods
Hole, Massachusetts. The precision for the NOS-AMS A!“C analyses is + 5 %o, precision
for §"°C is + 0.1%o, and for DIC is + 3%.

April 2001, November 2001, and April 2002 DIC and alkalinity samples were
titrated using a potentiometric closed-cell titration system, where DIC and alkalinity
values were determined for 100 ml of sample based on a modified Gran function method
(Bradshaw et al 1981). Analyses were standardized to a certified reference material with
alkalinity known to a precision better than 0.01%. For samples with salinity > 5 ppt,
alkalinity was determined to a precision of 0.5%, while alkalinity for samples with
salinity < 5 ppt was calculated to a precision of 2% (both precisions based on seawater
standard replicate analyses). July 2000 alkalinity values were determined by the Gran

function titration method, where 1 ml of sample was titrated to a precision of 0.5%.

All salinity samples, with the exception of samples from November 1999, were
collected in 100-ml glass bottles and analyzed by the hydrographic facility in the Physical
Oceanography department at Woods Hole Oceanographic Institution, with a precision
better than + 0.01 ppt. November 1999 salinity values were estimated using a hand-held

salinometer to a precision of + 0.1 ppt.

November 2001 sediment pore water samples were collected by hand from the top
0-6 cm of two sites within the Middle Sound marsh just below Rich Inlet (Figure 1). The
mud was collected into centrifuge tubes, of which half were stored on ice prior to
centrifuging, and half were kept at room temperature to determine the changes in carbon
isotopic composition of the water resulting from post-sampling respiration CO, additions.
Samples were spun for five minutes at 5000 rpm to separate pore waters; the pore water
was drawn into a syringe and filtered through a 0.45-pm Gelman Acrodisc syringe filter
into N,-flushed glass ampules containing HgCl, (McCorkle et al 1985). The ampules
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were immediately flame-sealed for later DIC extraction and DIC isotopic analysis. CO;
for isotopic analyses was stripped from seawater as described in McCorkle et al (1985).
Pore water radiocarbon samples were prepared by pooling CO; stripped from individual
pore water samples within each of the two sampling sites until at least 0.5 mg C was
collected to ensure high-precision AMS analyses. Pore water 83C and A™C

measurements were also made at the NOS-AMS facility.

As described in Chapter I, A™C values are determined by the normalization of
8'C values to 8'3C = — 25%o, to remove fractionation effects that can result from CO,
evasion or photosynthesis (Stuiver and Robinson 1974). However, Torn and Southon
(2001) have suggested that in cases where isotopic fractionation effects are minimal and
mixing of CO, from sources with very different isotopic compositions predominates, this
normalization may result in an error in estimation of the 14¢ content of the sample. In
this study, both mixing and isotopic fractionation effects may be important, and 8"c-

normalized radiocarbon concentrations (A'*C values) were chosen.

Results
Estuary high/low tide pairs

The Futch Creek estuary high tide - low tide salinity difference (ASal) was always
larger than the ASal in the Pages Creek estuary (Tables 2-3). For both estuaries, ASal
was much smaller in November 2001 than in either April 2001 or April 2002. November
2001 ASal averaged 0.2 ppt in the Pages Creek estuary and 1.7 ppt in the Futch Creek

estuary (Figures 2a, b).

Pages Creek estuary high tide salinity values in April 2001 were, on average,
more than 1 ppt lower than high tide salinities from later sampling dates (34.8 ppt in
April 2001 compared to 36.4 ppt in November 2001 and 36.2 ppt in April 2002). Futch
Creek estuary high tide sample salinity was more consistent between sampling periods,

averaging 36 + 0.4 ppt.

42



AM™C values in both estuaries decreased from hi gh to low tide (Figures 3a-b). The
AMC change between high and low tide was invariably larger at Futch than at Pages.
Additionally, at Futch Creek the change in A'C from high to low tide (A A!*C), when
normalized to the high/low ﬁde change in salinity ASal, was highly consistent among
most sampling days in April 2001, November 2001 and April 2002 (Figure 4a).
A AYC/ASal was much more variable in the Pages Creek estuary (Figure 4b).

DIC concentrations increased from high to low tide during all sampling times at
Futch, averaging 2.2 +0.05 mmol/kg at high tide and 2.4 +0.16 mmol/kg at low tide
(Figures 5a, b). At Pages, DIC increased from hi gh to low tide in April 2001 and April

2002, but in November 2001, the DIC concentrations showed no consistent trend.

8'3C values generally decreased from high to low tide in the Futch Creek estuary,
with the exception of the high/low tide pairs in April 2001 (Figures 6a, b). Pages Creek
estuary 8'C values showed no consistent trend from high to low tide in April 2001 or
November 2002, while in April 2002, 313C values decreased from high to low tide. Asin
Futch, the April 22, 2001 high/low tide pair both showed unusually low §'>C values.

Unlike the DIC concentrations, TA values showed no consistent high/low tide
trend at the Futch Creek estuary in April 2001 and November 2001, though TA increased
from high to low tide in April 2002. There was also no consistent trend at the Pages
Creek estuary in April 2001 and November 2001, but TA also increased from high to low
tide during April 2002 (Figures 7a, b).

Time series

Hourly time series samples were collected in November 2001 and April 2002 at
the mouth of the Pages Creek estuary, and in April 2002 at the mouth of the Futch Creek
estuary (Table 4). Although only a few points within each time series were analyzed for
A™C, the lowest AMC values occurred at the lowest tide stage, with a general increase in
AMC with higher tide stage (Figures 8a-c). A similar trend was observed in all time

series for 8'°C values, with the lowest 8'°C at the lowest tide stage (Figures 9a-c).
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DIC and TA values from the Pages Creek estuary November 2001 time series
showed some scatter; both DIC and TA had a maximum value at low tide, but the rising
and falling tide data showed no clear trend. In both the Pages and Futch April 2002 time
series, however, the DIC and TA values were closely linked to the tidal cycle, with the

highest DIC and TA at low tide, and the lowest values at high tide (Figures 10 and 11).
- Rich Inlet and Mason Inlet — High tide/Low tide pairs

April 2002 high tide/low tide inlet measurements were taken at the mouths of
each inlet, where they connected to the Atlantic Ocean, and also where they intersected
the Intracoastal Waterway (ICW) (Figure 1). Salinity values were not highly variable as
a function of sampling location within the inlet, or from inlet to inlet (Table 5). ASal was
always small and decreased from high tide to low tide, averaging -0.12 ppt in Rich Inlet
and -0.09 ppt in Mason Inlet (Figure 12a). The single November 2001 inlet
measurement, made at low tide, showed a higher salinity (36.5 ppt) than was observed at
high or low tide in the inlets in April 2002. For the inlet high/low tide pairs, the
difference in AC value was always small, and generally within the + 5%0 measurement
error (Figure 12b). High/low tide DIC, 8"°C, and TA differences tended to be small as
well (Table 5).

Fresh water samples
Springs

The Pages Creek Bayshore spring A™C, 813C, DIC, and TA values were highly
consistent throughout sampling (-406 + 3 %o, -11 £ 0.1 %0, 4.3 + 0.2 mmol/kg, and 3.7 +
. 0.0 meq/L, respectively) (Table 6, Figures 13 and 14). Futch Creek estuary springs were
also relatively consistent with respect to AMC values (-441 + 14 %o) and 813C values (-12
% 0.7 %o).

Futch Creek spring DIC and TA concentrations fell into two distinct groups
(Table 6). The Saltwood Lane spring (sampled every season) had DIC values that were
consistently lower (2.8 + 0.0 mmol/kg) than the DIC in other springs within either estuary



(4.6 £ 0.4 mmol/kg). TA values followed a similar pattern. In April 2001, two additional
Futch springs were sampled, but the DIC and TA values of the Saltwood Lane April 2001
sample remained consistent with the other Saltwood spring samples (from July 2000,

November 2001, and April 2002) rather than the other April 2001 Futch spring samples.
Streams

Stream DIC ahd DIC isotopic compositions varied not only by location, but also
by sampling time. Although most of the Pages Creek Bayshore stream samples had
salinity < 0.2 ppt, the November 2001 Bayshore stream sample had a salinity of 31 ppt.
The Bayshore stream A'C values varied from —79 %o to —200 %o over three sampling
periods (including only Bayshore stream samples with salinity < 1 ppt) (Table 6, Figure
13). Bayshore stream DIC concentrations were also highly variable, ranging from 0.9 to
2.1 mmol/kg. 8"°C and TA values for the different stream samples also reflected this
varjability (-12 + 1 %o and 1.5 + 0.4 meq/L, respectively) (Figure 14). Two other streams
entering the Pages Creek estuary had A*C values from +86 %o to —192 %o, and a wide
range of §"°C, DIC, and TA values as well.

Only one stream was observed to enter the Futch Creek estuary (Scotts Hill
Loop). The April 2001 Scotts Hill Loop sample had high A*C (+87 %), low 8'*C (-19
%), and low DIC and TA values, while the November 2001 and April 2002 samples
showed the reverse, with low A™C (-173 = 18 %0), high §'>C (-11 + 2 %o), and high DIC
and TA values.

Groundwater

All NENHC wells screened in the Castle Hayne aquifer, and most screened in the
Peedee, had salinity less than 1 ppt in both July 2000 and April 2002 (Table 7). The
Porters Neck Castle Hayne-screened wells had A'C values ranging from —282%o to —
461%o, while Peedee-screened wells had lower A*C values, ranging from —770%o to —
832%o (Figure 13). Peedee wells had higher DIC (6.4 to 7.0 mmol/kg) and TA values
(5.6 to 6.0 meq/L) than the Castle Hayne wells (2.2 to 5.1 mmol/kg and 1.5 to 4.5 meg/L,
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respectively). 813C values overlapped between aquifers, with a larger range of 8cC
values measured in the Castle Hayne wells (—11%o to —13 %o in the Peedee wells, and
8'3C = —11%o to —15%o in the Castle Hayne) (Figure 14). The A*C values within each
Porters Neck well were highly consistent from July 2000 to April 2002, as were the 313c,
DIC, and TA values.

A summary of the relative AMC values of the different DIC input sources to both
estuaries is shown in Figure 13. The Peedee aquifer had the lowest AM™C values, at
< —700%o; the Castle Hayne aquifer and the spring AYC values were similar, at around
—400%o, and the stream AMC values showed a range from about +85%o to —200%o.
Estuarine high tide AC values were between +80%o and +40%o, while low tide values

ranged from about +50%o to —140%o. Inlet AMC values were generally > +50%o.
Salt marsh DIC additions

Surface waters overlying the marsh at Rich Inlet had AC values averaging +79
7 %o for the samples kept on ice prior to analysis, and AYC values averaging +57 % 0.6 %o
for the samples kept at room temperature (Figure 1, Tables 8-9). The pore waters from
Site 1 had A™C values averaging = +25.0 + 20 %o (samples on ice) and +42.0 + 4 %o
(samples at room temperature). 813C values averaged —3.4 + 0.2 %o (samples on ice) and
4.6 + 0.3 %o (room temperature). At Site 2, the average AMC of the pore waters was +18
# 17 %o (samples on ice) and +24.3 %o (room temperature; only one pooled AMC value
was measured). The average 8"°C values were —3.0 % 0.3%o (samples on ice) and —4.6

0.8 %o (room temperature).

Discussion

In this section, a comparison between time series and high/low tide data is
discussed, as well as inlet high/low tide data. Additionally, the DIC and DIC isotopic

values of the salt marsh, spring, and stream inputs to the Pages and Futch Creek estuaries
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are assessed. These inputs are then included in mixing models to estimate artesian inputs

to the estuaries as a fraction of the total fresh water input.
Estuarine time series / high and low tide pair comparison

The DIC and DIC isotopic data from the three Pages and Futch estuarine time
series were compared with the high/low tide pairs from each estuary within the same
collection period, to determine whether sampling twice during a tidal cycle (before high
tide and before low tide) is sufficient to capture the full range of tidal variations in DIC
chemistry observed in the estuaries. When the salinity and A™C values of the time series
data are plotted together with the high/low tide pairs from each estuary, it is apparent that
the data from each time series fell along similar salinity-related trends to their estuarine
tide pairs (Figures 15a-b). This was particularly clear for the Futch April 2002 time
series; the Pages April 2002 time series showed more scatter but followed the general

trend (in Figure 15b, the lowest-salinity high and low tide pair represent April 2001 data,

for which there was no corresponding time series). The range of salinity values in the

November 2001 times series was so small that the time series data plotted within the

range of high tide samples.

A similar time series — high/low tide pair comparison for §'°C and salinity values
shows that at Futch, the April 2002 time series 8"°C values again plot exactly within the
range of the tide pair data, while at Pages, there is again more scatter (Figures 16a-b).
Here, the two time series (November 2001 and April 2002) follow different salinity
trends corresponding with their respective high and low tide pair trends. A comparison
of the DIC and TA time series and high/low tide values at both estuaries shows similar
patterns (Figures 17 and 18). From these data, the HT-LT pairs do provide a realistic
picture of the overall trends through the full tidal cycle.

Inlet high tide / low tide pairs

Although the inlet high/low tide pairs were sampled to make estimates of artesian
input on the ocean side of the ICW, the differences in both A™C (<10%0) and salinity

(~0.1 ppt) were too small to construct effective mixing models to determine spring inputs
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(Figure 12). Additionally, of the four high/low tide pairs, two had higher A*C values at
low tide than at high tide, suggesting that, at least in April 2002, the artesian AMC signal

did not persist outside of the estuaries. .
AC content of DIC from decomposition in salt marsh sediments

Pore waters from the Rich Inlet salt marsh were analyzed to assess the possible
DIC-AMC values that could be contributed to estuarine surface waters via salt marsh
respiration. Marsh pore water DIC AC values are assumed to be the result of the
addition of respiration DIC to the overlying seawater DIC. To determine the AC values

of the added DIC from respiration, a mass balance calculation was used:

(rco, ,, xA“C,, )=(TCO,  xA“Cy, )+(TCO xA“C,, )

2, pw 2, 5w 2,resp

@)

where PW = pore water, SW = overlying seawater, and TCOg,esp = DIC added by
respiration. A similar calculation was used to determine the 8'>C value of the respiration-
added DIC. Using equation (1), the average respiration DIC AC value was 21 + 26 %o
(8°°C=-6.7 £0.5 %o) at Site 1, and average AMC = —64 = 20 %o (81°C = —7.6 + 0.6 %o) at
Site 2 (Figures 19a-b). The measured pore waters were not replicate samples; they
contained variable amounts of respiration CO,, and the added DIC has a range of A¥C
and 8'C values. However, none of the added DIC had a AC value lower than —80%eo,
still much higher than any of the spring A™C values, and at the high end of the stream
AMC values (Figure 13). This confirms the assumption made in Gramling et al (2003)
that decomposition of organic matter in the salt marshes does not appear to be a source of

very low A'C DIC to these estuaries.

The average §"°C values of the added DIC (-7 %o) are high relative to the primary
organic matter source present in the salt marshes, the marsh grass Spartina alterniflora
(8"C = -12%o) (Craft et al 1988). This suggests that the added DIC is not the simple
result 'of respiration CO; additions, but reflects both respiration and other processes that

would add high-8"°C DIC, such as dissolution of shell fragments (8'°C ~ +1 %o) in the
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marsh soils. A DIC §"°C value of ~7%o resulting from these two processes alone would
require that about 60% of the DIC be contributed by respiration of Spartina organic
matter, and 40% of the DIC be contributed by dissolution.

Spring, stream, and groundwater variability — endmember selection for mixing models -

All spring inputs to these estuaries were highly consistent through time with
respect to AMC values, and some springs (such as the Pages Bayshore spring and the
Futch Saltwood spring) also showed high consistency in DIC concentration through time.
Because the DIC and A'C values of the Pages Bayshore spring are so consistent (Table
6, Figure 13), we use the July 2000 Bayshore spring sample to construct the Pages April
2001 mixing models, discussed below (when no Pages spring sample was collected).
Although the A™C values of all Pages and Futch springs were similar, the DIC

concentrations in the springs were variable spatially, even within a single estuary.

Stream inputs were also vériable, spatially and temporally, with respect to both
DIC concentration and A'*C value. One likely source of the variability is the observed
presence of springs in some streambeds, suggesting that these streams were likely to have

contained artesian inputs.

In Figure 20, all the spring and stream DIC and A'C values are plotted against the
July 2000 and April 2002 NENHC surficial, Castle Hayne, and Peedee groundwater
values. Though all NENHC wells are ohly about two kilometers apart (Figure 1),' the
NENHC Castle Hayne-screened wells (S1 — S3) have a large range of DIC and even A™C
values. The surficial wells are variable with respect to DIC, but most have AC values
that are > 0%o (exceptions to this are discussed in Chapter II, and not shown in Figure
20). Of the streams, the Futch Scotts Hill Loop stream sample from April 2001 has the
highest A™*C value and the lowest DIC concentration, and may therefore represent the

least spring-influenced stream endmember.

While the DIC values of the Saltwood Lane spring are similar to the NENHC well
S2, the Pages Creck Bayshore and Futch Creek Creekside springs have intermediate DIC
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values between wells S2 and S3, although these springs are also only a few hundred
meters apart (Figure 1, Figure 20). Spatial variability of both Castle Hayne groundwater
and Futch Creek spring nutrient levels has also been observed in previous studies; one
Castle Hayne-screened well demonstrated nitrate levels four times as high as another
Castle Hayne well only a few hundred meters away (Roberts 2002). Roberts (2002) also
found that the Futch Saltwood spring in the upper marsh had nitrate levels ten times as
high as the two Creekside springs. Mallin et al (1996) stated that observed spikes in
‘spring nutrient levels in the Porters Neck region were likely to be the result of periodic
introductions of fertilizer just updip of the area, and the variability in nutrient levels from
spring to spring may be representative of different flow paths within the aquifer, and
perhaps of spatially variable recharge areas where the confining unit is missing (Roberts
2002). This range of Castle Hayne DIC and even AMC aquifer values highlights the
necessity of measuring the composition of local inputs for geochemical estimates of
SGD.

DIC-A"C mixing lines between the low-DIC, high-A'*C April 2001 Scotts Hill
Loop stream and the NENHC Caétle Hayne wells S2 and S3 encompass most of the
observed stream DIC and A*C compositions (Figure 20). Although the Pages Creek
Bayshore stream DIC-A'C values fall along the Scotts Hill Loop - NENHC well S3
mixing line, the DIC-8'3C values of these streams are high relative a mixing line between
these samples (Figure 21). Howevér, the 8'°C values of a stream-groundwater mix may |
be significantly modified by CO, removal processes: photosynthetic removal of 1 mmol
of CO, from a mix of 35% groundwater and 65% stream would increase the 8'3C value of
the mix by 13%o (Figure 21). A combination of CO, removal (via photosynthesis and/or

gas evasion) and CO, additions (via respiration) could therefore result in the observed

stream DIC-8'3C values as well as the DIC-A'*C values.

In Figure 20, the DIC and AYC values of all spring and stream samples are plotted
with the surficial and Castle Hayne groundwater data. The fresh Bayshore stream

samples fall within this mixing triangle, and the temporal variability in the Bayshore
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composition seems to suggest a mixing trend, possibly reflecting varying degrees of
mixing between low-DIC, high-A'C stream water and high-DIC, low-A'C Castle Hayne
water. It is important to note that the stream compositions, if the result of two-
endmember mixing between Scotts Hill Loop and Castle Hayne water, are still no more
than 15% - 30% groundwater. It is also worth noting that as the streams entering the
Pages and Futch Creek estuaries are not true endmembers and generally contain varying -
degrees of spring input themselves, the mixing model estimates of relative spring input to

the estuaries using these streams as endmembers will be necessarily minimum estimates.

Figure 20 also shows that the spring samples fall into two distinct groups. The
Futch Creek estuary Saltwood Lane samples are lower in DIC concentration but have
similar A™C values to the Pages Bayshore and other Futch springs. The difference in
DIC concentration can have a significant impact on the estimation of spring inputs,
depending on which spring composition is used as the endmember in the mixing models.
Therefore, both spring compositions are considered in the mixing models for the Futch

Creek estuary (discussed below).

The single stream observed flowing into the Futch Creek estuary, the Scotts Hill
Loop Road stream, was sampled in April 2001, November 2001, and April 2002. The
discharge of this stream was not measured, but appeared to be extremely low during all
sampling periods, and seemed quite small compared to the volume of water observed
entering Futch Creek estuary from springs. Because of the observed low stream flow,
and the absence of any other observed stream inputs, it is possible that the outflow
composition of the Futch Creek estuary is the result of mixing between inflow and spring
alone. This possibility is supported by the generally constant change in A'*C relative to
the change in salinity from high to low tide in this estuary (Figure 4a), which suggests
that the A'C tracer of artesian discharge is essentially linearly related to the fresh water
input, and that the A'*C additions are coming from a fresh water source with a highly
consistent A*C value through time, such as the springs (whereas the Scotts Hill Loop

stream A'C value is quite variable from April 2001 to November 2001). Two-
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endmember (inflow-spring) and three-endmember (inflow-spring-stream) mixing in the

Futch Creek estuary are discussed further below.
Non-fresh (> 1 ppt) stream and spring samples

Several spring and stream samples, including the November 2001 Bayshore
stream, the November 2001 Saltwood spring, and the November 2001 and April 2002
Scotts Hill Loop stream samples, had salinity > 1 ppt (Table 6, Figure 20). The
November 2001 Futch spring sample (Saltwood Lane, ~ 4 ppt) was collected on the day
of the spring tide stage, and the salinity data suggest that the depression around the spring
was never fully flushed of high tide seawater during that sampling day. The slightly
elevated AC and 8§"C values from this spring sample, therefore, likely represent mixing

with seawater rather than real variability in spring composition.

Similarly, the November 2001 Bayshore stream sample, with salinity ~ 31 ppt,
was collected during the spring tide stage. During this sampling period, the streambed
was inundated with inflowing ICW water at high tide but the streamflow was too low to
completely flush the seawater on the falling tide. The elevated A'*C, §"°C, and DIC

“values in this stream sample relative to the other Bayshore stream samples are consistent
with the suggestion that this stream saﬁple consists of mixing between seawater and
spring inputs. As a result, the November 2001 Bayshore stream sample was not used in

. the Pages Creek November mixing models. Instead, an average Bayshore stream

composition from November 1999 to April 2002 was used. In several of the mixing
models shown below, the Bayshore streams with the maximum and minimum observed

AYC values were also included as constraints on a possible range of relative stream and

spring contributions to the fresh water budget.
Mixing models for outflow DIC

A salinity mass balance is used to constrain the maximum possible fresh water
flux to each estuary, while the observed AC value of the outflow is used to assess the
relative inputs of spring and stream to the fresh water budget. Then, three-component

mixing models are used to calculate the relative inputs of spring and stream to the total
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fresh water budget of the Pages and Futch Creek estuaries during April 2001, November
2001, and April 2002. As described in Chapter II, the models were based on the
measured DIC concentrations and DIC isotopic compositions of the three input

components.

For seawater-spring-stream endmembers, the A’C- and §'>C-DIC values are

given by:

AYCpix = )
l(X SwW X TCO 2, 5w X A”CSW )+ (Yspn'ng X TCO 2,spring X AMC:pring )+ (Zstream X TCO 2,stream X Aucstream )J
l(XSW X TCO 2,5W ) + (Yspn'ng X TCO 2,spring ) + (Z stream X TCO 2,srream7J

and 813Cmix = (3)

l(X SwW X TCO 2, 5w X 613CSW ) + (Yspn'ng XTCO 2,spring X 813Cspring )+ (Zstream X TCOZ,stream X 613Cstream )J

l(X SW X TCO 25w ) + (Yspring X TCOZ,spn'ng ) + (Z stream X TCO2,srream )J

where SW = seawater and X, Y, Z = volume fractions of each component.
April 2001 mixing models
Pages and Futch Creek estuaries

On both sampling days in April 2001, the outflow compositions of both the Pages
and Futch Creek estuaries plot on or near the inflow-spring mixing line, suggesting that
essentially all of the fresh water input to both estuaries during this sampling period was

from springs (Figures 22-23).

In the Futch Creek estuary, the outflow composition plots near the inflow-spring
mixing line, but outside of the three-component mixing triangle (Figure 23). As
discussed in the fresh water endmember section above, Figures 23a-b include an

additional three-component mixing line, using an average April 2001 spring A™*C-DIC
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composition. When plotted with this average spring composition, the outflow DIC falls

along the inflow-spring mixing line.
November 2001 mixing models
Pages Creek estuary

Five inflow/outflow pairs were used to construct mixing models in the Pages
Creek estuary in November 2001 (Figures 24-26). The inflow-outflow salinity
differences were very small on all five November 2001 sampling days (Figure 2a). On
two of the sampling days (Nov. 12 and Nov. 13) the outflow AM™C-DIC falls along a
mixing line between inflow and spring, suggesting that all fresh water contribution to the
estuary on these days consisted of spring input (Figures 24a-d). However, on the
remaining three sampling days (Nov. 15, 16, and 18), the outflow DIC suggested a mix
between spring, stream, and inflow compositions (Figures 25-26). Mixing with the
highest-A!*C stream (Nov-99) and the lowest-A!*C stream (Apr-02) shows that the
percent spring contribution to the total fresh water input on these days varies between
about 45-50% using the November 1999 stream composition to as little as 10-20% using
the April 2002 stream composition (Figures 25-26). However, these estimates consider
only the DIC and A!C data; none of these mixing scenarios is able to simultaneously

satisfy A™C and salinity constraints.

The high/low tide ASal on these three days was small, only ~0.1 ppt, but a spring-
stream-inflow mix resulting in the observed DIC and AC values of the outflow
composition would require a ASal of 2 - 4 ppt. For the November 15™ mixing model, to
lower the salinity-constrained A*C to the observed outflow value via respiration, nearly 1
mmol of DIC (at the lowest calculated AC value of -64%¢) would need to be added (and
would then require CO, removal via photosynthesis or gas evasion to bring the DIC
values back to the observed outflow DIC) (Figure 27). Therefore, during these three
sampling days in the Pages Creek estuary, the A'C and salinity tracer signals provide
inconsistent spring input estimates, suggesting that there may be other processes

impacting the A'C or salinity budgets of the estuary on these days.
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Futch Creek estuary

Five inflow/outflow pairs were also used to construct mixing models in the Futch
Creek estuary in November 2001 (Figures 28-30). Mixing with both the Saltwood spring
(low-DIC) and the average of the Futch April 2001 springs (high-DIC) are shown.
Although the Saltwood spring appeared to be discharging at the highest rate of the Futch
springs, the outflow DIC does not plot along the inflow-Saltwood spring mixing line
during any of these sampling days, suggesting that one or more additional inputs or
processes were impacting the outflow composition. Although stream inputs may have
affected the outflow, as described above, stream flow in the Scotts Hill Loop stream
appeared to be negligible. However, the outflow composition could be the result of
mixing between inflow and other springs with higher DIC, followed by respiration DIC
additions and/or CO, removal via gas exchange or photosynthesis (which would not alter

the A™C value but would change the DIC) (Figure 31).

For the November 12™ mixing model, this is most re'asonable if the spring
endmember used is the average Futch spring composition (as shown in the Futch Creek
April 2001 mixing models), rather than the low-DIC Saltwood Lane spring. The
November 12" outflow DIC was 7% fresh relative to the inflow. Using this inflow-
spring miXx as a starting point, respiration additions at the lowest calculated A'C value (-
64%o) do not approach the outflow DIC from the inflow-Saltwood spring mixing line
(Figure 31a). However, from the inflow-average spring mixing line, it is possible to
approach the outflow DIC composition using any of the calculated respiration A*C

values (Figure 31b).

For the November 15™ mixing model, however, the outflow DIC is less than the
DIC of either inflow-spring mixing line (Figure 32). The outflow on this day was 4%
fresh relative to the inflow; taking the inflow-average spring at 4% fresh as the starting
point, it is possible to approach the outflow DIC composition by removal of DIC via
photosynthesis (and/or gas exchange). Again, because the outflow A*C value would be

unchanged by CO, removal, this scenario is most reasonable from the inflow-average
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spring 4% fresh starting point. Mixing between inflow, springs, and inputs from a high-
AMC source, such as the April 2001 Scotts Hill Loop stream (possibly representative of
surficial groundwater A'C values) would not provide a match to the outflow DIC (Figure

32).
April 2002 mixing models
Pages and Futch Creek estuaries

In April 2002, the Pages Creek estuary outflow AM™C-DIC fall near the inflow-
spring mixing line, suggesting that fresh water inputs to Pages during these sampling
days consist only of spring inputs (Figure 33). In the Futch Creek estuary, mixing lines
between both the Saltwood spring and the average spring compositions are included. As
described for the November 2001 Futch Creek estuary mixing models, stream inputs may
have impacted the outflow DIC, but observations of streamflow from this time suggested
that is was very low. The outflow DIC on both April 2002 sampling days plotted along
the inflow-average spring mixing line rather than the inflow-Saltwood spring mixing line
(Figure 34).

Results from these mixing models suggest that the spring flux dominated the fresh
water budget to both estuaries in April 2001 and April 2002, and to the Futch Creek
estuary in November 2001 (Table 10). In the Futch Creek estuary, it is likely that spring
inputs, whether from the Saltwood spring or from other springs within the estuary,
dominated fresh water inputs. The November 2001 ASal was very small in Pages Creek,
and as a result the relative spring and stream inputs are difficult to resolve. This
difficulty is compounded by the variability of stream chemistry, and the possibility of

multiple springs with a range of DIC concentrations and isotopic compositions.

Conclusions

In this chapter, the A'*C-based method described in Chapter II for estimating the

artesian component of the fresh water input to an estuary was expanded in several ways:
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the generality of the method was tested by its application to an additional estuary. The
small changes in A™C from high to low tide in the inlets suggests that spring A'C signals
did not persist on the ocean side of the ICW, at least during the sampling in April 2002;
as a result, effective mixing models could not be constructed for the inlets. Hourly
sampling through a tidal cycle, when compared with sampling high and low tide pairs,
shows that sampling only twice during a tidal cycle was generally sufficient to capture

the range of DIC and DIC isotopic variation.

Spring inputs appeared to dominate the fresh water budgets of both estuaries
during April 2001 and April 2002. In November 2001, spring inputs may still have
provided all of the fresh water to the Futch Creek estuary, but only 10-50 % of the fresh
water input to the Pages Creek éstuary (although the dual constraints of salinity and AMC

could not be satisfied by a combination of the measured inputs).

Spring chemistry was highly consistent throughout sampling within the two
spring sites that were measured over several collection efforts. Although the AC values
of all the springs were similar, some spatial variability in spring DIC concentration was
observed within the Futch Creek estuary. In contrast, we observed substantial variability
in stream AMC values, at least in part reflecting variable contributions of artesian
groundwater to the streams. Finally, organic matter decomposition in salt marshes does
not appear to be a source of low A'C DIC, confirming an assumption made by Gramling
et al (2003). |
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Table III-1: Sample locations and map identification (Figure 1).

Sample name

Pages Creek estuary
Estuary mouth station
(HT/LT pairs, time series)
Streams
Bayshore
Furtado
Porters Neck
Springs
Bayshore

Futch Creek estuary
Estuary mouth station
(HT/LT pairs, time series)
Streams
Scotts Hill Loop
Springs
Spring upstream of 1021 Creekside
Spring at 1021 Creekside
Saltwood Lane spring

Inlets
Mason Inlet - mouth
Mason Inlet - ICW
Rich Inlet - mouth
Rich Inlet - ICW

Groundwater
NENHC wells S1, D1
NENHC wells S2, D2
NENHC wells S3, D3

Rich Inlet pore water Site 1
Rich Inlet pore water Site 2

Latitude

34.27000

34.27784
34.29033
34.29422

34.27705

34.30072

34.31368

34.30325
34.30260
34.30384

34.24502
34.24847
34.29790
34.29467

34.28056
34.28882
34.29783

34.29022
34.28965

Longitude
-77.77063

-77.80270
-77.78715
-77.78065

-71.80173
-77.74383

-77.75668

-77.75945
-77.75798
-77.76485

-71.77130
-77.78045
-71.71653.
-77.74080

-77.75847
~71.75157
-77.74498

-77.73595
-71.73573

* Pore water sites 1 and 2 are not distinguishable at map scale.
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Map ID (Figure 1)

El

E2
E3

E5

E6

E7

E8
E9
E10

Il
I3

I4

Gl
G2
G3

PW
PW*




Table I1I-2: Pages Creek estuary DIC, TA, and DIC isotopic values.

Pages Creek-High Tide
Pages Creck-High Tide
Average 4/01 PC HT
Pages Creek-Low Tide
Pages Creck-Low Tide
Average 4/01 PCLT

Pages Creck-High Tide
Pages Creek-High Tide
Pages Creek-High Tide
Pages Creek-High Tide
Pages Creek-High Tide
Average 11/01 PC HT
Pages Creek-Low Tide
Pages Creek-Low Tide
Pages Creek-Low Tide
Pages Creek-Low Tide
Pages Creek-Low Tide
Average 11/01 PCLT

Pages Creek-High Tide
Pages Creck-High Tide
Pages Creck-High Tide
Average 4/02 PC HT
Pages Creek-Low Tide
Pages Creek-Low Tide
Pages Creek-Low Tide
Average 4/02 PCLT

Date

4/21/01
4/22/01

4/21/01
4/22/01

11/12/01
11/13/01
11/15/01
11/16/01
11/18/01

11/12/01
11/13/01
11/15/01
11/16/01
11/18/01

4/13/02
4/14/02
4/16/02

4/13/02
4/14/02
4/16/02

Salinity

ppt

34.728
34.778
34.753
33.238
33.870
33.554

36.262
36414
36.428
36.406
36.424
36.387
36.106
36.128
36.333
36.328
36.285
36.236

36.147
36.160
36.153
36.153
35.124
35.167
35.327
35.206

DIC

mmol’kg

2.368
2.363
2.365
2.463
2.439
2451

2.339
2.337
2.301
2.289
2.289
2.311
2.343
2.355
2.301
2.279
2.188
2.293

2.175
2.171
2.191
2179
2.268
2.246
2.239
2.251
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A¥C
o/oo

39.1
40.0
39.6
-10.0
279
2.0

46.3
61.8
65.9
71.8
63.4
61.8
46.0
52.8
342
53.0
54.9
48.2

55.3
521
53.7

35.3
40.7
38.0

8 c
o/oo

-0.78
-1.89
-1.34
-0.84
-1.30
-1.07

-0.41
-0.27
-0.08
0.03
0.02
-0.14
-0.51
-0.46
0.00
0.06
0.03
-0.18

0.29
0.14
0.22

-0.55

- -0.58

-0.57

TAlk
meq/L

2.489
2.560
2.525
2.488
2514
2.501

2.563
2.559
2.534
2.525
2.525
2.541
2.557
2.571
2.539
2.523
2.444
2.527

2415
2.413
2416
2.415
2.466
2.462
2.478
2.469



Table I11-3: Futch Creek estuary DIC, TA, and DIC isotopic values.

Futch Creek-High Tide
Futch Creek-High Tide
Average 4/01 FC HT
Futch Creek-Low Tide
Futch Creek-Low Tide
Average 4/01 FCLT

Futch Creek-High Tide
Futch Creek-High Tide
Futch Creek-High Tide
Futch Creek-High Tide
Futch Creek-High Tide
Average 11/01 FC HT
Futch Creek-Low Tide
Futch Creek-Low Tide
Futch Creek-Low Tide
Futch Creek-Low Tide
Futch Creek-Low Tide
Average 11/01 FC LT

Futch Creek-High Tide
Futch Creek-High Tide
Futch Creek-High Tide
Average 4/02 FC HT
Futch Creek-Low Tide
Futch Creek-Low Tide
Futch Creek-Low Tide
Average 4/02 FCLT

Date

4/21/01
4/22/01

4/21/01
4/22/01

11/12/01
11/13/01
11/15/01
11/16/01
11/18/01

11/12/01
11/13/01
11/15/01
11/16/01
11/18/01

4/13/02
4/14/02
4/16/02

4/13/02
4/14/02

- 4/16/02

Salinity

ppt

35.587

35.429
35.508
23.693
26.936
25.314

36.348
36.427
36.434
35.427
36.481
36.223
33.783
34.392
34.964
34.908
34.560
34.521

35.911
35917
35.991
35.939
32.446
32.934
30.843
32.074

DIC

mmolkg

2.288
2.328
2.308
2.700
2.591
2.645

2.207
2.182
2.204
2.225
2.207
2.205
2.358
2.311
2214
2.248
2.264
2.279

2.175
2.176
2214
2.188
2.268
2.315
2.392
2.325
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A¥c
o/oo

59.9

43.7

51.8
-139.5
-100.4
-120.0

67.8
69.5
75.8
76.6
62.4
70.4
6.1
12.5
36.0
29.8
209
211

55.8
41.9
48.9

-3.2
-44.7
-24.0

8"c
o/oo

-0.23
-4.59
=241
-0.23
-3.74
-1.99

0.44
0.54
0.49
0.48
053
0.50
-1.49
-1.09
-0.59
-0.64
-0.71

-0.90

0.14
-0.02
0.06

-1.38
-2.22
-1.80

TAIk
meq/L

2.456
2.790
2.623
2.449
2.698
2.574

2.492
2.481
2.481
2.520
2.492
2493 .
2.539
2512
2.482
2467
2.489
2.498

2419
2416
2.430
2.422
2.537
2.528
2.620
2.562




Table III-4: Time series DIC, TA, and DIC isotopic values.

Pages Creek
Nov-01

Apr-02

Futch Creek
Apr-02

Date

11/13/01
11/13/01
11/13/01
11/13/01
11/13/01
11/13/01
11/13/01
11/13/01
11/13/01
11/13/01
11/13/01
11/13/01
11/13/01
11/13/01

4/14/02
4/14/02
4/14/02
4/14/02
4/14/02
4/14/02
4/14/02
4/14/02
4/14/02
4/14/02
4/14/02
4/14/02

4/16/02
4/16/02
4/16/02
4/16/02
4/16/02
4/16/02
4/16/02
4/16/02
4/16/02
4/16/02
4/16/02
4/16/02

Time

5:32

7:27

8:32

9:33

10:22
11:25
12:50
13:32
14:33
15:24
16:25
17:25
18:27
19:25

8:38

9:37

10:50
11:50
12:53
13:48
14:30
16:01
16:32
17:35
18:30
19:30

9:02
10:01
11:20
12:00
13:03
14:00
15:04
16:03
17:12
18:01
19:01
20:00

Salinity
ppt

36414
36.404
36.415
36.399
36.382
36.300
36.128
36.069
36.368
36.465
36.406
36.424
36.415
36.403

36.136
36.160
36.140
36.105
35.939
35.811
35.597
35.167
35.220
35.734

mmol/kg

35999

36.082

35915
35.991
35.907
35.937
35.837
35513
34.408
33.202
30.843
32.055
35.527
35.898
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DIC

2.337
2.320
2.352
2.335
2.325
2.324
2.355
2.359
2.280
2.290
2.305
2.258
2294
2.320

2.183
2.171
2.176
2171
2.196
2.205
2223
2.246
2242
2.216
2.201
2.188

2228
2214
2212
2.208
2.207
2.208
2253
2.310
2.392
2.351
2.193
2.191

AMc
o/oo

61.8

57.5
52.8
52.5

55.3

42
389
353
19.7
354

41.9

-1.3
-44.7
-27.6
39.6

" c
o/oo

-0.27

-0.33
-0.46
-0.51

0.29

-0.1
-0.28
-0.55
-0.51
-0.18

-0.02

-1.34
-2.22
-1.78
-0.09

TAlk
meq/L

2.559
2.547
2.570
2.556
2.564
2.559
2.571
2.575
2.553
2.537
2.547
2.557
2.541
2.552

2421
2.413
2.416
2416
2.431
2.437
2.447
2.462
2.463
2.443
2.432
2.425

2.437
2.430
2.430
2.430
2435
2.446
2.483
2.531
2.620
2.563
2.457
2437
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Table I11-6: Spring and stream DIC, TA, and DIC isotopic values.

Springs
Pages Creek
Bayshore spring
Bayshore spring
Bayshore spring
Bayshore spring
Futch Creek
Spring upstream of 1021 Creekside
Spring at 1021 Creekside
Saltwood Lane spring

Average 2001 FC springs

Saltwood Lane spring
Saltwood Lane spring
Saltwood Lane spring

Streams
Pages Creek
Stream at Bayshore
Stream at Bayshore
Stream at Bayshore
Stream at Bayshore

Average Bayshore stream (< 1 ppt)

Stream at Bayshore
Stream at Porters Neck Road
Stream at Furtado Road
Stream at Furtado Road
Stream at Furtado Road
Futch Creek
Stream at Scotts Hill Loop Road
-Stream at Scotts Hill Loop Road
Stream at Scotts Hill Loop Road
Other streams
Sidebury Road
Sidebury Road
* No analysis performed.

Date

11/7/99
7/28/00
11/15/01
4/11/02

4/20/01
4/20/01
4/23/01

7/28/00
11/16/01
4/18/02

11/7/99
7/28/00
4/23/01
4/11/02

11/15/01
4/19/01
4/19/01
11/15/01
4/13/02

4/23/01
11/15/01
4/15/02

4/1/01
11/15/01

Salinity

ppt

0.0
0.526
0.239
0.232

0.404
0.483
0.283
0.390
0.585
4.032
1.115

0.0
0.189
0.164
0.261
0.154
30.963
0.142
0.177
3.662
0.201

0.080
9.919
3.057

0.746
0.141

DIC

mmolkg

4.485
4.432
4.118
4.157

4.863
4.287
2.805
3.985
3.062
2.837
2.850

0.866
1.645
1.311
2.092
1.478
2.593
1.218
2.530
3.806
2.859

0.677
3.188
3.248

0.742
2.850

A¥c
o/oo

-406.4
-403.2
-404.8
-410.3

-445.0

-453.8
-446.4
-431.7
-418.1
-449.3

-19.4
-162.3
-126.6
-199.7
-142.0

-67.6
-191.8
-176.5

86.4

86.5
-160.5
-186.0

-109.5

¥c
o/oo

-11.16
-11.23
-11.28
-11.10

-12.16
-12.06
-11.51
-11.91
-11.34
-10.50
-11.09

-13.19
-12.22
-12.63
-10.75
-12.20
-3.97
-12.56
-11.25
-9.30

-18.86
-9.43
-12.49

-14.08

Talk
meq/L

3.657
3.696
3.741

4.558
4.037
2799
3.798
2.892
2.724
2.750

1.440
1.139
1.876
1.485
2.549
1.067
2434
3.570
2.656

0.461
3.064
3.005

0.474
2.280



Table III-7: Groundwater DIC, TA, and DIC isotopic values.

Well Sample*

Date
Boiling Spring Jul-00
Fort Fisher State Park  Jul-00
Southport Jul-00
Sunset Harbor Jul-00
Topsail Beach Jul-00
Wilmington Airport ~ Jul-00
Calabash Jul-00
NENHC S1 Jul-00
NENHC S2 Jul-00
NENHC S3 Jul-00
NENHC D1 Jul-00
NENHC D2 Jul-00
NENHC D3 Jul-00
NENHC S1 Apr-02
NENHC S2 Apr-02
NENHC S3 Apr-02
NENHC D1 Apr-02
NENHC D2 Apr-02
NENHC D3 Apr-02

* Surficial aquifer-screened monitoring wells installed and maintained by the North Carolina
Department of Environment and Natural Resources (NC-DENR). NENHC wells installed and
maintained by the Northeast New Hanover Conservancy.

Ly nnvy

S/L®

CH
CH
CH
PD
PD
PD

CH
CH
CH
PD
PD
PD

Aquifer** Salinity

ppt

0.069
0.280
0.100
0.067
0.107
0.076

0.309

0.294
0.249
0.895
0.410
1.461
0.777

0.257
0.281
0.818
0.379
0.667
0.512

DIC

mmolkg

3.256

1.465
0.922
1.631
1.338

2.138
2974
5.104
6.426
6.991
6.439

2.319
3.050
4.881
6.404
6.839
6.531

A¥c
o/oo

88.4
36.6
77.1
41.1
-407.9
18.4

-396.9

-281.8
-413.8
-330.9
-770.2
-821.9
-829.2

-332.4
-461.4
-289.4
-774.3
-794.3
-831.9

"¢
o/oo

-22.84
-19.36

- -23.03

-26.89
-15.82
-15.12

-12.99

-15.36
-12.86
-13.61
-10.95
-12.03
-12.67

-15.03
-11.39
-14.37
-10.85
-11.20
-12.56

** S = Surficial (water table) aquifer, CH = Castle Hayne aquifer; PD = Peedee aquifer

@ Listed as surficial by NC-DENR (based on absence of a confining unit); well lithology
shows the presence of a limestone unit
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Talk
meq/L

0.24
1.08
0.24
0.04
0.99
0.28

4.22

1.52
2.68
4.54
5.64
5.90
5.52

2.034
2.675
4282
5.618
5.999
5.729




Table I1I-8: Rich Inlet marsh pore water (cold) and surface water DIC and DIC isotopic values.

DIC Std Pc st Pooled for AYC  std
mmolkg  Dev 0/00 Dev A¥c analysis 0/00 Dev
Pore water: Site 1 #1 4.299 -3.45 1,59,15 8.6
Pore water: Site 1 #5 4.324 -3.42
Pore water: Site 1 #9 5.142 -3.46
Pore water: Site 1 #15 4277 -3.47
Pore water: Site 1 #3 4.139 -3.50 3,11, 13, 19 18.7
Pore water: Site 1 #11 4.590 -3.52
Pore water: Site 1 #17 4.049 -2.98
Pore water: Site 1 #19 4.867 -3.46
Pore water: Site 1 #7 5.181 -3.46 7 47.7
Average pore water: Site 1 4.541 0.427 -3.41 0.16 25.0 20.3
Pore water: Site 2 #21 4.296 -3.51 21,23,29,37 6.2
Pore water: Site 2 #23 4.049 -3.21
Pore water: Site 2 #29 3.347 -2.59
Pore water: Site 2 #37 3.644 -2.93
Pore water: Site 2 #27 3.225 -2.57 27, 31, 33,35, 39 30.3
Pore water: Site 2 #31 3.801 -3.12
Pore water: Site 2 #33 3.205 -291
Pore water: Site 2 #35 3.500 -2.83
Pore water: Site 2 #39 3.568 -3.26
Average pore water: Site 2 3.626 0.370 -2.99 0.31 183 17.0
Inlet surface water 2.102 0.42
Inlet surface water 2.093 0.47
Inlet surface water 2.065 0.43
Inlet surface water 2.081 0.39 84.1
Inlet surface water 2.021 043
Inlet surface water 2.105 0.49
Inlet surface water 2.038 0.43
Inlet surface water 2.069 0.49
Inlet surface water 2.110 0.49
Inlet surface water 2.051 0.47 74.5
Inlet surface water 2.100 0.44
Average surface water 2.076 0.030 0.45 0.03 79.3 6.8
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Table IT1-9: Rich Inlet marsh pore water (warm) and surface water DIC and DIC isotopic values.

DIC Std &°C Std  Pooledfor AYC Std
mmolkg Dev_ ofoo  Dev AM¥C analysis  o/oo Dev
Pore water: Site 1 #2 5.368 -4.78 2,18,20 38.4
Pore water: Site 1 #18 5.701 -4.48
Pore water: Site 1 #20 5.399 -4.25
Pore water: Site 1 #4 5.911 -4.99 4,8,10 41.9
Pore water: Site 1#8 6.956 -4.39
Pore water: Site 1 #10 6.390 -4.86
Pore water: Site 1 #6 and #14 5.698 -4,26 6,14,12,16 458
Pore water: Site 1#12 5.570 -491
Pore water: Site 1 #16 5.598 -4.32
Average pore water: Site1|  5.843 0.517 -4.58 0.30 420 3.7
Pore water: Site 2 #28 5.105 -4.30
Pore water: Site 2 #40 4.706 -4.49
Pore water: Site 2 #26 and #36 11.206 -6.33
Pore water: Site 2 #32 5.144 -4.28
Pore water: Site 2 #34 4971 -4.25 32,34,38 243
Pore water: Site 2 #38 5453 -4.14
Average pore water: Site2| 6.098 2514 -4.63 0.84 24.3
Inlet surface water 2.039 045
Inlet surface water 2.046 0.45
Inlet surface water _ 2.114 0.47
Inlet surface water 2.027 0.41 ' : 57.5
Inlet surface water 2.047 0.51
Inlet surface water 2.065 0.43
Inlet surface water 2.070 043
Inlet surface water 2.082 0.39 56.6
Average surface water | 2.061 0028 044 0.04 571 06
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Table I11-10: Fresh water inputs as percent of outflow, and spring inputs as percent of fresh inputs.

% fresh in outflow % of fresh input = spring ~ HT-LT salinity

(ASal)
Pages Creek 11/7/99 11 100 33
7/26/00 35 0 11.687
4/21/01 6.7 100 1.490
4/22/01 2.6 100 0.908
11/12/01 0.43 100 0.157
11/13/01 0.79 100 0.286
11/15/01 0.26 10-44%* 0.095
11/16/01 0.21 16-48* 0.079
11/18/01 0.38 18-50* 0.138
4/13/02 2.8 e 1.023
Futch Creek** 4/14/02 27 100 0.993
4/16/02 23 100 0.826
4/21/01 33 100 11.894
4/22/01 24 100 8.493
11/12/01 7.1 100 2.565
11/13/01 5.6 100 2.035
11/15/01 4.0 100 1.470
11/16/01 15 100 0519
11/18/01 53 100 1.921
4/13/02 9.6 e 3.465
4/14/02 8.3 100 2.983
4/16/02 14 100 5.148

* Varies with stream endmember
** Stream input may be negligible

@ AMC not analyzed.
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Figure ITI-1

Detail of Pages Creek, Futch Creek, Rich Inlet, and Mason Inlet sample locations.
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(® Estuary stations (April 2001, November 2001, April 2002)
| Streams (November 1999, July 2000, April 2001, November 2001, April 2002)

Largest springs (November 1999, July 2000, April 2001, November 2001, April 2002)
Other springs (April 2001)

Rich Inlet (November 2001)

Rich and Mason Inlets (April 2002)

NENHC wells (July 2000, April 2002)

oEE>D @

Figure I1I-1
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Figure I11-2

April 2001, November 2001, and April 2002 high and low tide salinity values for a)
Pages Creek. b) Futch Creek. Within each box, the left dot represents the high tide value
(HT) and the right dot the low tide value (LT). Note the scale change between a and b.
High/low tide salinity gradients were higher during all sampling times in Futch Creek
than in Pages Creek.

72




|V N
K 6072 6232 zo@x

W

»%»7»

T-II1 2an3yy

AU AR
VAN zo,éﬁ 20?62 zo?éz

....... b, O I o SO M

(dd) Lurres

jeel)d yoing

-

(1dd) Ayurreg

yee1) sebed

LE

&

73




Figure I1I-3

April 2001, November 2001, and April 2002 high and low tide AM™C values for a) Pages
Creek. b) Futch Creek. Within each box, the left dot represents the high tide value (HT)
and the right dot the low tide value (LT). Note the scale change between a and b.
High/low tide AM™C gradients were higher during all sampling times in Futch Creek than
in Pages Creek.
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Figure 111-4

The high/low tide change in A™C (A A™C) normalized to the high/low tide change in
salinity (ASal) at Futch and Pages Creeks. Bars represent A AC/ASal for each sampling
day in April 2001, November 2001 and April 2002. Lines represent the tide range
between high and low tide for each creek (secondary y-axis). a) Futch Creek. On most
sampling days (with the exception of November 16, 2001), the change in AMC was
linearly related to the change in salinity. b) Pages Creek A AMC/ ASal. While the change
in AC value normalized to the change in salinity was generally consistent in April 2001
and April 2002, the differences in AYC values on three of the sampling days in
November 2001 were high relative to the salinity difference.
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Figure III-5

April 2001, November 2001, and April 2002 high and low tide dissolved inorganic
carbon (DIC) concentrations for a) Pages Creek. b) Futch Creek. Within each box, the
left dot represents the high tide value (HT) and the right dot the low tide value (LT).
Note the scale change between a and b. While DIC increased from high to low tide at all
times in the Futch Creek estuary (though the changes were relatively small in November
2001), DIC only increased at the Pages Creek estuary from high to low tide during April
2001 and April 2002, while November DIC showed no pattern between high and low
tide.
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Figure I11-6

April 2001, November 2001, and April 2002 high and low tide 8'°C values for a) Pages
Creek. b) Futch Creek. Within each box, the left dot represents the high tide value (HT)
and the right dot the low tide value (LT). Note the scale change between a and b. d1C
values decreased from high to low tide in the Futch Creek estuary during November 2001
and April 2002, and in the Pages Creek estuary in April 2002, while April 2001 showed
little change on one sampling day, and unusually low high and low tide values on the
second day, in both estuaries. November 2001 813C values showed little change from
high to low tide in the Pages Creek estuary.
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Figure II1-7

April 2001, November 2001, and April 2002 high and low tide total alkalinity (TAIk)
concentrations for a) Pages Creek. b) Futch Creek. Within each box, the left dot
represents the high tide value (HT) and the right dot the low tide value (LT). Note the
scale change between a and b. While both estuaries showed an increase in alkalinity
from high to low tide in April 2002, April 2001 and November 2001 alkalinity
concentrations showed no consistent pattern between high and low tide in either estuary.
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Figure II1-8

Time series A!*C and water depth data for a) November 2001 in Pages Creek. b) April
2002 in Pages Creek. c) April 2002 in Futch Creek. Lines represent the water depth
throughout the tidal cycle. Error bars represent + 5%o precision error on AMC values.
AMC values are lowest at low tide for all three time series and highest at high tide.
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Figure I11-9

Time series 8°C and water depth data for a) November 2001 in Pages Creek. b) April
2002 in Pages Creek. c) April 2002 in Futch Creek. Lines represent the water depth
throughout the tidal cycle. Error bars represent + 0.1 %o precision error on 8'3C values.
313C values are lowest at low tide for all three time series and highest at high tide.
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Figure II1-10

Time series DIC and water depth data for a) November 2001 in Pages Creek. b) April
2002 in Pages Creek. c) April 2002 in Futch Creek. Lines represent the water depth
throughout the tidal cycle. Error bars represent + 0.5 % precision error. November DIC
concentrations show scatter throughout the time series; although a maximum value
occurs near low tide. April 2002 Pages and Futch Creek time series, however, show clear
maxima at low tide in DIC concentration, while the high tide values are low.

88



a . e DIC
Pages Creek: November 2001 Water depth
2.38 - + 20
2.36 - <
) J + 15
¥ 234 )
S 232 - =
- 110 &
E 230 - g
13!
a 2281 1058
2.26 -
2-24 [ T i T T 1 H T 0-0
4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00
b. Pages Creek: April 2002 ¢ DIC
Water depth
2.26 - T25
- 2.24 - T20 g
222 - 8
= 1158
g 220 1 &
E 1108
O 218 - =
=) 8
2.16 - 405
2-14 T T T T T T 0-0
8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00
c. . e DIC
Futch Creek: April 2002 A
ch free P Water depth
2.40 - = —12
] 410
g 2.35 i z
= 2.30 - T8
g 106§
S 225 4
0 x +o4E
a 1 L B
2.20 = = 102~
2.15 l : — . ; ; 0.0
8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

89

Figure I11-10




Figure III-11

" Time series TAlk and water depth data for a) November 2001 in Pages Creek. b) April
2002 in Pages Creek. c¢) April 2002 in Futch Creek. Lines represent the water depth
throughout the tidal cycle. Error bars represent + 0.5 % precision error. November TAlk
concentrations show scatter throughout the time series; although a maximum value
occurs near low tide. As with DIC concentrations, April 2002 Pages and Futch Creek
time series, however, show clear maxima at low tide in alkalinity, while the high tide
values are low.
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Figure I11-12

Rich and Mason Inlet November 2001 low tide and April 2002 high and low tide a)
salinity values, b) A'C values, and c) DIC concentrations. Within each box, the left dot
represents the high tide value (HT) and the right dot the low tide value (LT). Note the
scale change between a and b. Salinity decreased from high to low tide at all times in
April 2002, with the change in salinity </= 0.2 ppt. November 2001 low tide salinity was
higher than any of the April 2002 values. A'C values showed no clear hi gh/low tide
trend in the inlets, and tidal differences in A*C were generally within the + 5%o precision
error. DIC concentrations increased from high to low tide during April 2002.
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Figure I11-13

AMC values of possible DIC sources to the Pages and Futch Creek estuaries. Inlet and
inflow AC values tend to be > +40%o, stream A*C ranges from +90%o to —200%o, and
spring AM™C values are ~ —400%o. Castle Hayne groundwater AM™C values are similar to
spring values, ranging from —300%o to —500%o, while Pecdee groundwater AMC values
are the lowest, ranging from —750%o to —~850%eo.

94



200

Fi 111-13
gure - A14C o/oo
-1000 -800 -600 -400 -200 0
Wells T T T T T
Surficial » ®e
Castle Hayne (NENHC S1, S2, S3) ‘0 g:
Peedee (NENHC D1, D2, D3) pAY
Springs .
Pages  Bayshore :
L 4
L 4
Futch  gaitwood g
*
&
o
Creekside rS
L 4
Streams
Pages Bayshore . *
L 4
<
L 4
Porters Neck ¢
Furtado * o
Futch Scotts Hill Loop o *
Sidebury Road © *
Estuaries
P;lges High tide ’:
i L o 4
Low tide A
®
Futch  High tide :0
i L 4 4
Low tide Py
L 4
. . €  Salinity < 1 ppt
Inlets High t.lde O Salinity > Ippt :
Low tide : : . ®

95




Figure I11-14

8'3C values of possible DIC sources to the Pages and Futch Creek estuaries. Inlet and
inflow 8'3C values tend to be > 0%o, stream 8"°C ranges from —5%o to —20%o, and spring
813C values were highly consistent through time and from spring to spring, ranging from
—11%o to —12%o for all spring samples. Castle Hayne groundwater §'>C values ranged
from —11%o to —15%o; Peedee groundwater 8'>C values ranged from —11%o to —13%o.
Surficial aquifer 8'*C values varied from —13%o to —27%o.
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Figure III-14
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Figure III-15

November 2001 and April 2002 time series A'*C and salinity data with high and low tide
AM™C and salinity data. Error bars represent * 5%o precision error in A'C value and +
0.01 ppt error in salinity value. a) Futch Creek estuary (April 2002 time series only). b)
Pages Creek estuary (November 2001 and April 2002 time series). The trend of the
change in A"*C-salinity from high to low tide corresponds to the trend shown by each
time series.
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Figure IT1-16

November 2001 and April 2002 time series 8"°C and salinity data with high and low tide
8'3C and salinity data. Error bars represent = 0.1%o precision error in 8'>C value and =
0.01 ppt error in salinity value. a) Futch Creek estuary (April 2002 time series only). b)
Pages Creek estuary (November 2001 and April 2002 time series).
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Figure III-17

November 2001 and April 2002 time series DIC and salinity data with high and low tide
DIC and salinity data. Error bars represent + 0.5 % precision error in DIC value and +
0.01 ppt error in salinity value. a) Futch Creek estuary (April 2002 time series only). b)
Pages Creek estuary (November 2001 and April 2002 time series).
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Figure I11-18

November 2001 and April 2002 time series TAlk and salinity data with high and low tide
alkalinity and salinity data. Error bars represent + 0.1%o precision error in alkalinity
value and + 0.01 error in salinity value. a) Futch Creek estuary (April 2002 time series
only). b) Pages Creek estuary (November 2001 and April 2002 time series).
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Figure I11-19

Pore water DIC and DIC isotopic values from two sites within the salt marsh next to Rich
Inlet, with calculated average isotopic values of DIC added to surface waters flooding the
marsh at high tide. a) A™C values. b) §'°C values. Average AC values of the DIC
added to the surface waters were —~21%. at Site 1 and —64%o at Site 2. Average §°C
values of the DIC added to the surface waters were —6.7%o at Site 1, and —7.6%o at Site 2.
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Figure I11-20

Pages and Futch Creek estuary spring and stream DIC and AMC values, with surficial,
Castle Hayne, and Peedee groundwater DIC and AYC values. Black lines represent
mixing lines between Scotts Hill Loop stream and NENHC wells S2 (dotted) and S3
(solid). While the A*C values of all springs are similar, the Futch Creek springs fall into
two groups with respect to DIC concentration: Saltwood Lane spring (low-DIC) and
other Futch Creek springs (high-DIC, similar to Bayshore spring). The Futch Creek
Saltwood Lane spring samples are similar in composition to the NENHC well S2,
screened in the Castle Hayne. The Pages Creek Bayshore spring samples, and the other
Futch Creek spring samples, had DIC values intermediate between NENHC Castle
Hayne-screened wells S2 and S3. The AMC and DIC values of the Bayshore stream
samples (diamonds) may result from mixing between Castle Hayne water (of a well S3
composition) and surficial groundwater, as represented by the low-DIC, high- AMC Scotts
Hill Loop stream sample (April 2001).

The salty November 2001 Bayshore stream (~30 ppt) is likely to be a mix of inflow and
spring only. The average Bayshore stream sample (used in mixing calculations) is
represented by a grey diamond. The average April 2001 Futch spring sample (used in
mixing calculations) is represented by a white cross on a black box. Black boxes on the
stream/groundwater mixing lines represent a mix of 50% stream and 50% groundwater;
stream samples, if a mix between the two, are always less than 50% Castle Hayne water.
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Figure ITI-21.

Pages and Futch Creek estuary spring and stream DIC and 8'3C values, with surficial,
Castle Hayne, and Peedee groundwater DIC and 313C values. Although the Pages
Bayshore stream samples fell along a DIC-AC mixing line between the Futch Creek
Scotts Hill Loop stream and NENHC well S3, the Bayshore streams have high e
values relative to the Scotts Hill Loop — well $3 DIC-8"°C mixing line. However,
isotopic fractionation effects resulting from CO, removal via photosynthesis or gas
evasion can significantly affect the 8'3C value of the mix. Photosynthetic removal of 1
mmol of CO, from a mix of 35% groundwater (well S3) and 65% Scotts Hill Loop
stream water — as suggested by the position of the April 2002 Bayshore stream sample
along the DIC-A'C mixing line — increases the 8'3C value of the mix by 13%.. A
combination of CO, removal and respiration CO, additions can thus alter the 813C value
of the mix to match the observed April 2002 stream composition.
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Figure I11-22

April 2001 Pages Creek estuary DIC concentration—A'*C mixing curves between three
components: inflow from Intracoastal Waterway (ICW), fresh stream input, and artesian
groundwater/spring input. The low tide outflow DIC and DIC isotope values are also
shown (grey square). Analytical precision for each graph is approximated by symbol
size. a) April 21, 2001. b) April 22, 2001. On both days, the low tide outflow DIC-AMC
composition falls along the inflow-spring mixing line, suggesting that in April 2001,
artesian spring inputs contributed ~ 100% of the total fresh water input to Pages Creek at
low tide.
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Figure III-22
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Figure I11-23

April 2001 Futch Creek estuary DIC concentration—AC inflow-stream-spring mixing
curves. Two mixing triangles are shown: the solid lines represent inflow and stream
mixing with the largest observed Futch Creek spring (Saltwood Lane). The ‘+’ symbols
represent inflow and stream mixing with an average of April 2001 Futch Creek spring
compositions (similar A*C values but hi gher DIC concentrations than at Saltwood). The
low tide outflow DIC and DIC isotope values are also shown (grey square). Analytical
precision for each graph is approximated by symbol size. a) April 21, 2001. b) April 22,
2001. The outflow falls outside of the Saltwood spring triangle but along the inflow-
spring average mixing line. These mixing curves suggest that the artesian spring inputs
contributed all of the fresh water input to the Futch Creek estuary at low tide in April
2001.
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Figure I11-23 Futch Creek
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Figure I11-24

* November 2001 Pages Creek estuary DIC concentration—A'C inflow-stream-spring
mixing curves. Because no November 2001 fresh stream sample was collected, an
average Pages Creek stream composition is used to construct the mixing triangle. The
low tide outflow DIC and DIC isotope values are also shown (grey square). a) November
12, 2001, with b) close-up of outflow DIC. c) November 13, 2001, with d) close-up of
outflow DIC. Analytical precision for graphs a and c are approximated by symbol size,
while for b and d, error bars represent + 5%o precision error in AM™C values and % 0.5%o in
DIC values. On both days, the low tide outflow DIC-AYC compositions fall along the
inflow-spring mixing line, suggesting that on these days artesian spring inputs
contributed ~ 100% of the total fresh water input to Pages Creek at low tide.
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Figure II1-25

November 2001 Pages Creek estuary DIC concentration—A'*C inflow-stream-spring
mixing curves. In addition to the average Pages Creek stream composition, mixing
triangles using the range of observed stream AM™C values are also shown, to provide
maximum and minimum estimates of relative spring input. The low tide outflow DIC
and DIC isotope values are also shown (grey square). a) November 15, 2001, with b)
close-up of outflow DIC. c) November 16, 2001, with d) close-up of outflow DIC.
Analytical precision for graphs a and ¢ are approximated by symbol size, while for b and
d, error bars represent + 5%o precision error in AMC values and # 0.5%o in DIC values.
On both days, the outflow DIC-A!*C composition is within the mixing triangle,
suggesting a mix of inflow, stream, and spring inputs. Calculation of the relative spring
contribution is dependent on choice of stream endmember. However, as discussed in the
text, the measured outflow A!*C and salinity values cannot be matched by any
combination of observed spring, stream and inflow inputs.
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Figure I11-26

November 2001 Pages Creek estuary DIC concentration—-A"*C inflow-stream-spring
mixing curves. In addition to the average Pages Creek stream composition, mixing
triangles using the range of observed stream A'C values are also shown, to provide
maximum and minimum estimates of relative spring input. The low tide outflow DIC
and DIC isotope values are also shown (grey square). a) November 18, 2001, with b)
close-up of outflow DIC. Analytical precision for graph a is approximated by symbol
size, while for b, error bars represent + 5%o precision error in AM™C values and + 0.5%o in
DIC values. The placement of the outflow DIC-A'C values, between the inflow-average
stream mixing line and the inflow-minimum AMC stream mixing line, suggests that
stream inputs dominated the fresh water budget to Pages Creek on this sampling day.
However, as discussed in the text, the measured outflow A™C and salinity values cannot
be matched by any combination of observed spring, stream and inflow inputs.
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Figure I11-27

Closeup of Pages Creek estuary November 15, 2001 inflow-spring-stream mixing
triangle. The low tide outflow DIC and DIC isotope values are represented by the grey
square, with error bars representing + 5%o precision error in A'C values and + 0.5%0 in
DIC values. Outflow salinity was only 0.3% fresh (mixing line falls within the high tide
symbol size); as discussed in the text, the low tide outflow A*C value cannot be matched
by any salinity-constrained combination of the measured inflow and fresh water inputs.
Respiration DIC additions (at A™C value = ~64%o) also cannot approach the outflow
DIC.
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Figure I11-28

November 2001 Futch Creek estuary DIC concentration—A'*C inflow-stream-spring
mixing curves. Although the Scotts Hill Loop stream is included as a mixing
endmember, field observations of very low streamflow during sampling suggest that the
outflow is more likely a mix of inflow and spring only. Two mixing triangles are shown:
the solid lines represent inflow and stream mixing with the largest observed Futch Creek
spring (Saltwood Lane). The ‘+’ symbols represent inflow and stream mixing with an
average of April 2001 Futch Creek spring compositions (similar AM™C values but higher
DIC concentrations than at Saltwood). The low tide outflow DIC and DIC isotope values
are also shown (grey square). a) November 12, 2001, with b) close-up of outflow DIC.
¢) November 13, 2001, with d) close-up of outflow DIC. Analytical precision for graphs
a and c are approximated by symbol size, while for b and d, error bars represent + 5%o
precision error in AYC values and + 0.5%o in DIC values.
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Figure ITI-29

November 2001 Futch Creek estuary DIC concentration-A'*C inflow-stream-spring
mixing curves. Although the Scotts Hill Loop stream is included as a mixing
endmember, field observations of very low streamflow during sampling suggest that the
outflow is more likely a mix of inflow and spring only. Two mixing triangles are shown:
the solid lines represent inflow and stream mixing with the largest observed Futch Creek
spring (Saltwood Lane). The ‘+’ symbols represent inflow and stream mixing with an
average of April 2001 Futch Creek spring compositions (similar AYC values but higher
DIC concentrations than at Saltwood). The low tide outflow DIC and DIC isotope values
are also shown (grey square). a) November 15, 2001, with b) close-up of outflow DIC.
c) November 16, 2001, with d) close-up of outflow DIC. Analytical precision for graphs
a and c are approximated by symbol size, while for b and d, error bars represent + 5%o
precision error in AM™C values and % 0.5%o in DIC values.
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Figure I11-30

November 2001 Futch Creek estuary DIC concentration—AC inflow-stream-spring
mixing curves. Although the Scotts Hill Loop stream is included as a mixing
endmember, field observations of very low streamflow during sampling suggest that the
outflow is more likely a mix of inflow and spring only. Two mixing triangles are shown:
the solid lines represent inflow and stream mixing with the largest observed Futch Creek
spring (Saltwood Lane). The ‘4’ symbols represent inflow and stream mixing with an
average of April 2001 Futch Creek spring compositions (similar AY™C values but higher
DIC concentrations than at Saltwood). The low tide outflow DIC and DIC isotope values
are also shown (grey square). a) November 18, 2001, with b) close-up of outflow DIC.
Analytical precision for graph a is approximated by symbol size, while for b, error bars
represent + 5%o precision error in A'C values and = 0.5%o in DIC values.
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Figure I11-31

Closeup of November 12, 2001 Futch Creek estuary DIC concentration-A'*C inflow-
stream-spring mixing curves, with respiration DIC additions. The outflow sample on this
day was 7% fresh relative to the inflow sample. The low tide outflow DIC and DIC
isotope values are shown (grey square), with error bars representing + 5%o precision error
in AMC values and + 0.5%o in DIC values. a) Starting at the 7% fresh point on the
inflow-Saltwood spring mixing line, respiration DIC added at A™C = —64%o does not
approach the outflow DIC composition. b) From the 7% fresh point on the inflow-spring
average mixing line, additions of DIC at both —-64%o and —21%o approach the outflow
DIC.
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Figure II1-32

Closeup of November 15, 2001 Futch Creek estuary DIC concentration—A'*C inflow-
stream-spring mixing curves, with CO, removal due to photosynthesis. The outflow
sample on this day was 4% fresh relative to the inflow sample. The ‘+’ symbols
represent inflow and stream mixing with an average of April 2001 Futch Creek spring
compositions. The ‘x’ symbols represent inflow mixing with the April 2001 Scotts Hill
Loop stream sample (high AC and low DIC). The low tide outflow DIC and DIC
isotope values are shown (grey square), with error bars representing =+ 5%o precision error
in AMC values and + 0.5%o in DIC values. The dotted line represents The outflow DIC is
lower than the inflow-spring mixing line, and cannot be matched by a mix between any
inflow-spring 4% fresh point and the April 2001 Scotts Hill Loop stream sample.
However, from the 4% fresh point on the inflow-spring average mixing line,
photosynthetic removal of CO2 allows the inflow-spring mix composition to approach
the outflow composition.
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Figure I11-33

April 2002 Pages Creek estuary DIC concentration-A'“C inflow-stream-spring mixing
curves. The low tide outflow DIC and DIC isotope values are also shown (grey square).
a) April 14, 2002, with b) close-up of outflow DIC. c) April 16, 2002, with d) close-up
of outflow DIC. Analytical precision for graphs a and ¢ are approximated by symbol
size, while for b and d, error bars represent + 5%o precision error in AMC values and +
0.5%o in DIC values. Outflow DIC-A'*C values are near the inflow-spring mixing line,
suggesting that on these sampling days, spring inputs were ~ 100% of the fresh water
input to Pages Creek at low tide.
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Figure 111-34

April 2002 Futch Creek estuary DIC concentration-A'*C inflow-stream-spring mixing
curves. The ‘+’ symbols represent inflow and stream mixing with an average of April
2001 Futch Creek spring compositions. The low tide outflow DIC and DIC isotope
values are also shown (grey square). a) April 14, 2002, with b) close-up of outflow DIC.
c) April 16, 2002, with d) close-up of outflow DIC. Analytical precision for graphs a and
¢ are approximated by symbol size, while for b and d, error bars represent + 5%o precision
error in A™C values and + 0.5%0 in DIC values. As for November 2001, the Scotts Hill
Loop stream is included as a mixing endmember, but field observations of very low
streamflow during sampling suggest that the outflow is more likely a mix of inflow and
spring only.
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Chapter IV. PROCESSES CONTROLLING ESTUARINE RADIUM AND RADON FLUXES
Abstract

The mass balances of 2*°Ra, *®Ra, ?’Ra, **Ra, and *’Rn were evaluated within
two North Carolina estuaries in April 2001, November 2001, and April 2002.
Radiocarbon data, collected concurrently, suggest that fresh water input to Pages and
Futch Creeks was primarily controlled by fresh artesian inputs from the confined aquifer.
*2Rn activities were very high in the springs, and hourly time series data from the Futch
Creek estuary showed a strong inverse correlation between salinity and **’Rn, suggesting
that the springs also supported most of the excess 2?Rn budget in both estuaries.

Outflow radium and radon activities were almost always higher than inflow
activities in the Futch Creek estuary, but export was less consistent in the Pages Creek
estuary, particularly during the November 2001 season. In the Futch Creek estuary in
April 2001, all of the excess 226R a in the low tide outflow relative to the inflow at high
tide was also derived from the springs. During the other sampling seasons the springs
were a significant source of excess 225Ra to both estuaries. In the Futch Creek estuary in
April 2001, most of the excess 228pa was derived from spring inputs, but during other
sampling periods (and at all times in the Pages Creek estuary), less than 25% of the
observed excess 22®Ra was contributed by springs. The maximum spring contribution to
the excess 2’Ra and ?*Ra was generally less than 10%.

A source in addition to springs, streams, and inflow from the ICW is required to
support most of the observed excess 2*Ra, ?’Ra, and ***Ra at Futch, and to support
excess 2Ra, 2®Ra, ?Ra, and **Ra at Pages. Residual (non-spring, stream, or inflow)
excess radium activity ratios show that the additional input was generally high in **Ra
relative to 2°Ra, and was probably also elevated in ***Ra relative to **Ra. The source of
the 2°Ra and **Ra may be seepage through the estuarine bottom sediments, driven by
both advection of surficial groundwater and tidal pumping.

1. Introduction

Radium and radon isotopes have been used as geochemical tracers of submarine
groundwater discharge (SGD) because they tend to be highly enriched in groundwater
relative to seawater, behave conservatively with respect to biological processes, and
decay over a range of half-lives that make them useful for measuring mixing of water
masses over different time scales (e.g. Bollinger and Moore 1993; Rama and Moore
1996; Cable et al 1996; Krest et al 2000; Corbett et al 1999, 2000). The total discharge of
groundwater at the coast can encompass both land-sea fluxes from coastal aquifers and

seawater cycling through coastal sediments; recently, several studies have suggested that
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estimates of SGD based on fluxes of radium and radon are likely to measure both
terrestrially-driven groundwater flux and flux due to the recirculation of seawater (e.g.
Moore 1999; Burnett et al 2002; Cable et al 2003).

Seawater recirculation often represents a majority of the total discharge of
groundwater at the coast, and the chemical constituents transported by recirculating salt
water can have a significant impact on the receiving waters. Moore (1999) defined the
underground coastal mixing zone where fresh groundwater interacts with circulating
seawater as a “subterranean estuary”. Recirculation of seawater through bottom
sediments can lead to the oxidation and release of buried organic matter and can thereby
have a significant impact on coastal nutrient budgets. Additionally, the fluid composition
of the water in this “subterranean estuary” is often highly chemically altered relative to
either of its original sources, and can be instrumental in altering the redox state in
sediments, in dolomitization of coastal limestone, or in calcite dissolution (Moore 1999).

Both radium and radon isotopes are generated in sediments and can subsequently
be transported to the water column by a variety of mechanisms. Dissolved species in
interstitial waters can be added to the water column by diffusion across the sediment-
water interface. Pore water exchange with surface waters can occur by repeated draining
and refilling of sediments due to the rise and fall of the tide, or as a result of wind-driven
tidal pumping of overlying water throilgh bottom sediments; additionally, diffusive fluxes
may be enhanced by bioturbation and bioirrigation of the sediments (e.g. Bollinger and
Moore 1993; Webster et al 1994, 1995; Hancock and Murray 1996; Rama and Moore
1996).

In addition to transport to coastal waters from sediment pore waters, radium and
radon may also be transported by land-sea fresh groundwater fluxes (from confined or
surficial aquifers). These radium inputs may not be easy to distinguish: in tidal marsh
zones, seepage from an unconfined coastal aquifer may not be limited to the head of the
estuary, but may be more diffuse, channeled farther into the marsh as a result of the
development of muddy, low-permeability layers adjacent to the creeks, and of spatial

heterogeneities in the hydraulic conductivity of the creek bed (Schultz and Ruppel 2002).
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To better interpret the flux estimates derived from isotopes of radium and radon at a
given site, it is important to determine the processes that control the budgets of each
tracer within the site.

In this study, radon-222, the four isotopes of radium, and salinity in-two small
North Carolina estuaries were simultaneously measured. DIC and DIC isotopes were
also measured (Chapter III). Tracer isotopic ratios and relationships were observed to
determine their source(s) (e.g. advective and diffusive fluxes via estuarine bottom
sediments, tidal flushing of estuarine sediments, or discharge from springs), as well as
their major pathways and systems of transport.

During nearly all sampling periods, the radon budget in both estuaries could be
accounted for by discharge from artesian sources. Spring discharge, as reflected in AMC,
provided nearly all the fresh water to both estuaries during the sampling times (as
described in Chapter III). The four isotopes of radium, however, were not linearly related
to salinity during our sampling, and were more strongly related to seepage from saline
bottom sediments than to fresh groundwater discharge. The radium data also did not
show a strong correlation to the tidally-driven draining and refilling of marsh sediment
pore water.

1.1 Radium Systematics

The uranium and thorium decay series produce four radium isotopes: 26Ra(typ =
1600 yr), 2*Ra (ti2 = 5.75 yr), **Ra (t1, = 11.4 d), and ***Ra (ty2 = 3.66 d) (Figure 1).
Each radium isotope is the decay product of a thorium parent. While thorium isotopes
are highly particle-reactive in both fresh and salt water (Kgq, the ratio of adsorbed to
dissolved species, is ~10"), radium isotopes adsorb to particles in fresh water (Kq ~10% to
10°) but become mobilized in waters of increasing ionic strength (e.g. Li et al 1977). Ina
closed system, secular equilibrium between parent and daughter isotopes is reached when
the rate of decay of the daughter is balanced by its rate of formation by the parent.

The difference in their sorptive properties can create parent-daughter
disequilibrium: upon interaction with seawater, radium is released by sediments

preferentially to thorium and is transported away from its parent. As a result, the radium
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is no longer supported by thorium decay and decreases as a function of its own
radioactive decay. The decay of unsupported radium within the water column can be
used to estimate the time since removal from the sediments (Rama and Moore 1996;
Krest 1999).

Although the rate of desorption of radium from particles in waters of increasing
ionic strength does not significantly vary among the four isotopes, sediments that
experience frequent inundation by salt water, such as in tidal marshes, can become
depleted in the longer-lived radium isotopes relative to the shorter-lived radium isotopes
(Webster et al 1995). Webster et al (1994) experimentally determined that when clay-
sized sediments (with a higher proportion of surface-bound Ra relative to sand-sized
grains) were flushed with a 50% seawater solution, only 1% of the total bound radium
was lost to the pore water in a single flushing. For tidal sediments flushed every 12
hours, weeks are required to remove all the surface-bound radium from a single pool (if
not replaced by its Th parent). Repeated flushing of sediments on such time scales (long
relative to the half-lives of ***Ra and *’Ra but short relative to the half-lives of *Ra and
226Ra) will result in a smaller decrease in the steady-state concentration of short-lived Ra
isotopes in bottom sediments but a depletion of the long-lived isotopes, assuming no
additional source of radium to the sediments (Hancock and Murray 1996).

Dissolved or particulate activity ratios of the four radium isotopes can vary as a
result of differences in the source material. Although the average crustal abuhdance of
thorium is about three times that of uranium, carbonates tend to be enriched in uranium
(which can replace calcium in the limestone mineralogical structure, or can be adsorbed
to phosphate minerals) relative to thorium (which is highly particle-reactive and is
depleted in seawater). The average relative abundance of uranium to thorium in
limestones is ~ 1.3, while in beach sandstones the U:Th ratio is closer to 0.5 (Clark et al
1966; NCRP 1987). Consequently, groundwater from a limestone aquifer can become
enriched in the 22U- and 2°U-series daughters ??Ra and 2?’Ra relative to the 2*?Th-series
daughters *®Ra and **Ra (Figure 1).

1.2 Radon Geochemistry
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Radon is highly enriched in groundwater relative to seawater (Cable et al 1996a,b;

Corbett et al 1999; Corbett et al 2000; Top et al 2001). *’Rn, with a half-life of 3.8 days,
is the radioactive decay product of 226Ra (Figure 1), and is ultimately a decay product of |
238J. 2Rn is released to groundwater by production and alpha-recoil from 226Ra within

- the aquifer material (Rama and Moore 1984; Ellins et al 1990). Because it is a noble gas,
therefore not subject to chemical transformation, and has a short half-life, radon is well
suited to measuring groundwater discharge to a tidally flushed estuarine system.
However, radon is quickly lost to the atmosphere once groundwater is exposed at the land
surface. As a result, coastal 2?Rn activities may provide only a minimum estimate of the;

total groundwater flux (Corbett et al 1999; Swarzenski et al 2001).

2. Methods
2.1 Study Site

Pages Creek and Futch Creek are two small, well-mixed tidal creeks located on
the Intracoastal Waterway (ICW) northeast of Wilmington, NC (Figure 2). The closest
hydraulic connection between this section of the ICW and the Atlantic Ocean are two
inlets that cut through the salt marsh barrier islands, Rich Inlet to the north and Mason
Inlet to the south (Figure 2).

The Pages Creek estuary, including fringing salt marshes that are inundated at
high tide, has an area of about 6.7 x 10° m®. The Futch Creek estuary is about two-thirds
the size of the Pages Creek estuary, with an area of about 4.4 x 10° m®. The Pages Creek
tide range averages about 0.9 meters, while the Futch Creek tide range averages about 0.6
meters. At low tide, the upper creekbeds of both Pages and Futch Creeks are exposed,
even during neap tide.

Neither creek receives discharge from a major river; fresh water inputs into each
creek consist of several small, intermittent streams (recharged by local precipitation and
by groundwater), artesian springs, and diffuse groundwater seepage from the unconfined
surficial aquifer. In the Pages Creek estuary, one large spring at the upstream end of the

estuary is the most visible and temporally consistent source of confined groundwater,
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though other smaller and more temporally variable springs have been observed. In the
Futch Creek estuary at least three large springs have been observed to last for the
duration of the study (Roberts 2002).

North Carolina coastal plain geology consists of interbedded sands, silts, clays,
and limestones that dip and thicken eastward (Riggs et al 1995; Winner and Coble 1996;
Harris 1996). Pages Creek and Futch Creek are located near the New Hanover County
line, in the southern portion of Onslow Bay. In this region, the highly productive Castle
Hayne aquifer, composed of shell limestone, dolomitic limestone, sandy limestone, and
fine to medium sand underlies the unconsolidated sands and clays of the surficial aquifer
(Winner and Coble 1996; Giese et al 1997). The Castle Hayne confining unit is thin,
only about 3 meters throughout much of its area, and contains sand lenses that allow
some vertical leakage between the Castle Hayne and overlying aquifers (Winner and
Coble 1996; Giese et al 1997). The underlying Cretaceous units (the Peedee, Black
Creek, and Cape Fear formations) contain interbedded sand, clay, and silt, which become
calcareous in the Peedee (Sohl and Owens 1991).

2.2 Sample Collection and Analysis

2.2.1 Sample Collection

Radium, radon, nutrient, and salinity samples were collected in April 2001,
November 2001, and April 2002. These periods were chosen to observe both seasonal
and tidal effects on these tracers. April 2001 samples were collected about one week
prior to the spring tide. November 2001 samples were collected before, during, and after
the spring tide. April 2002 samples were collected during neap tide.

Estuary samples were collected in two ways: in high tide/low tide pairs (just prior
to full high or full low tide), and in time series: ‘every hour for a full 12-hour tidal cycle.
The primary goal of time series sampling was to determine whether sampling twice
during a tidal cycle (in high tide/low tide pairs) is sufficient to capture the full range of
tidal variations in radium and radon chemistry observed in the estuaries. High tide/low
tide pairs were collected from the Pages and Futch Creek estuaries in April 2001,

November 2001, and April 2002. Time series data were collected from the Pages Creek
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estuary in November 2001 and April 2002, and from the Futch Creek estuary in April
2002. All estuary samples were collected inside the mouth of each creek (Figure 2).

To consider how estuarine tracer fluxes might impact the coastal ocean, and to
determine how strongly our estuarine radium and rédon tracer signatures persist when
integrated with signals from other neighboring creeks and salt marshes, samples were
collected in high tide/low tide pairs from Rich Inlet and Mason Inlet (Figure 2). High
and low tide samples were collected both at the mouth of each inlet (where the inlet
connects to Onslow Bay), and also where the inlet connects to the ICW.

Samples were also collected from the primary fresh water inputs to each creek: a
large spring discharging directly into the Pages Creek estuary, a spring discharging
directly into the Futch Creek estuary, and fresh water streams flowing into each estuary.
In addition, groundwater samples from monitoring wells screened in the Castle Hayne
and the underlying Peedee aquifers were collected in July 2000 and April 2002. These
groundwater samples provide an upper limit on radon activity entering the estuaries via
the springs (radon in the springs was likely to be subject to significant gas evasion during
discharge) and also provide endmember radium activities for the limestone Castle Hayne
and the sandy Peedee aquifers.

2.2.2 Dissolved/Particulate Radium Sampling and Analysis

Although all estuary samples were assumed to contain only dissolved radium,
fresh water samples (springs, streams, and groundwater) may have contained both
dissolved and particulate radium. Therefore, to assess total radium activities in fresh
waters entering the estuaries, some spring and stream samples were filtered to collect
particulates for sorbed radium analysis. April 2001 dissolved radium samples were
collected, unfiltered, by manual bilge pump into 40-liter cubitainers (for estuary samples)
or 20-liter cubitainers (for spring and stream samples). November 2001 dissolved radium
samples were collected by manual bilge pump into 20-L cubitainers or by automatic bilge
pump for 100+-L samples. All dissolved radium samples were collected unfiltered.
Particulate radium samples were collected by automatic bilge pump and filtered through a

1-pm filter. April 2002 dissolved radium samples were collected by manual bilge puinp
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into 20-L cubitainers or by automatic bilge pump for 100+-L samples, and by
submersible pump for the groundwater samples. July 2000 groundwater samples were

- 20-L; April 2002 groundwater samples were 100-L. All April 2002 radium samples were
filtered through at least a 1-pm filter; other samples were filtered as noted in Table 1.

Watef—filled cubitainers were attached to columns loosely filled with MnO,-
coated acrylic fibers and then were gravity fed through the fibers to collect the radium for
analysis. Samples collected by automatic bilge pump (100+-L) were pumped at <1 L
min through columns filled with MnO; fibers to collect the radium (Moore and Reid
1973).

The Mn-fibers were partially dried in the lab and placed in a delayed coincidence
scintillation counter for measurement of **Ra and ?**Ra (Moore and Arnold 1996). The
Mn-fibers were then ashed at 820°C for 16 h and the ash was packed in counting vials to
uniform density to minimize internal attenuation. The ash was placed in a well-type
gamma spectrometer to measure ?26Ra and *®Ra activities (Charette et al 2001).
Propagated error in the reported radium measurements is <10%.

2.2.3 Radon Sampling and Analysis

All November 2001 radon samples from estuaries, springs, and streams were
collected by hand in 4-liter evacuated bottles, which were immediately sealed to prevent
gas loss. April 2002 radon samples from the Pages Creek estuary and high tide/low tide
pairs from the Futch Creek estuary were collected by hand in 4-liter evacuated bottles,
sealed to prevent gas loss. The radon in these samples was extracted in a Lucas cell and
counted via alpha-scintillation (Mathieu et al 1988).

April 2002 radon samples from springs and streams were collected by manual
bilge pump and filtered through a 1-pum filter (spring samples only) into 250-ml bottles.
The Futch Creek estuary time series radon samples were subsampled into 250-ml bottles
from a 5-liter Niskin bottle that was manually tripped while submerged in the water
column. The radon in these samples was measured on a Durridge RAD7 solid state

silicon alpha detector to a precision better than 10%.
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April 2002 groundwater radon was sampled by submersible pump through a 1-pm
filter into 250-ml bottles. The radon in these samples was measured on a Durridge RAD7
solid state silicon alpha detector to a precision better than 10%. Radon samples collected
simultaneoﬁsly and measured using both analysis techniques correlate well, and are
generally within error (Figure 3).

2.2.4 Salinity and Water Depth Analyses

All salinity samples from April 2001, November 2001, and April 2002 were
collected in 100-m] glass bottles and analyzed by the hydrographic facility in the Physical
Oceanography department at Woods Hole Oceanographic Institution, with a precision
better than +0.01. Additional November 2001 and April 2002 time series salinity and
water depth measurements were made with a handheld YSI 600R Multiprobe System.

3. Results

Salinity, radium, and radon data from the Pages and Futch Creek estuaries are
presented, including high tide/low tide, time series, inlet, and spring and stream data.
Because it is expected that different processes might control **Ra and *’Ra versus 22%Ra
and **°Ra, radium results are divided into short- and long-lived radium results.
3.1 Pages Creek estuary — High tide/Low tide pairs

3.1.1 Salinity

Of the three sampling times (April 2001, November 2001, and April 2002), the
high tide (HT) - low tide (LT) salinity differences (ASal) in the Pages Creck estuary were
smallest in November 2001, averaging -0.2 ppt (Table 2, Figure 4a). The average April
2001 ASal was -1.2 ppt, while the average April 2002 ASal was -0.9 ppt. High tide
salinity values in April 2001 were, on average, more than 1 ppt lower than high tide
salinities from later sampling dates (34.8 ppt in April 2001 compared to 36.4 ppt in
November 2001 and 36.2 ppt in April 2002).

3.1.2 Short-lived radium isotopes: ***Ra and **Ra

Overall, Pages Creek estuary high tide-low tide ***Ra (A*Ra) and **Ra (A?”Ra)
generally showed similar patterns. In April 2001 and April 2002, the Pages Creek
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estuary exported both **Ra and ***Ra (showing an increase in the activity of each isotope
from high to low tide) with one exception (an exception not observed in the Futch Creek
estuary) (Figures 4b and c, Table 2).

The November 2001 A**’Ra and A**’Ra showed no consistent pattern of export or
import. The largest decrease in A***Ra occurred at the spring tide on November 16, 2001
(Figure 4b). A?*Ra in November 2001 was marked by very little change; the differences
between high tide *’Ra and low tide *’Ra were mostly within measurement error.

3.1.3 Long-lived radium isotopes: ***Ra and ?8Ra

?26Ra and **®Ra were also exported on three of the four sampling days in April
2001 and April 2002 (although the one day when this did not occur does not correspond
to that of the short-lived isotopes). As with the short-lived isotopes, the long-lived
isotopes did not show consistent export from the Pages Creek estuary in November 2001
(Table 2, Figures 5a-c). In general, A”?*Ra and A?*Ra tended to track each other well,
with the most notable exception on the day of full spring tide (November 16™): A**Ra
was exported, but A”?*Ra showed almost no change from high to low tide. Overall, high
tide *®Ra values were much lower in April 2002 (average 14.2 + 2.6 dpm 100L™) than
during April 2001 and November 2001 (26.6 + 2.7 dpm 100L™" and 28.4 + 4.7 dpm 100L
1, respectively).

3.1.4 Radon-222

222Rn generally increased from high to low tide in the Pages Creek estuary,
although there were exceptions during both November 2001 and April 2002 (Table 2).
There is no consistent pattern in A???Rn relative to tidal stage during November 2001:
A?”Rn fluctuates between positive and negative while the tide is increasing, then is
highest two days after the spring tide (Figures 6a-b). The average November 2001 high
tide *Rn activity was 5.1 +4.7 dpm LY, compared to 2.1 + 1.7 dpm L in April 2002.
November 2001 average low tide *2Rn was 11.3 +10.8 dpm L, compared to 5.1 2.5
in April 2002.

3.2 Futch Creek estuary — High tide/Low tide pairs

3.2.1 Salinity
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HT-LT ASal in the Futch Creek estuary was always larger than in the Pages Creek
estuary. As in Pages Creek, the smallest observed salinity differences between high and
low tide occurred in November 2001, averaging about -1.7 ppt (Table 3, Figure 7a). The
ASal averaged about -10 ppt in April 2001, and about -3.9 ﬁpt in April 2002. Unlike the
April 2001 high tide salinity in our Pages Creek samples, Futch Creek estuary high tide
sample salinity was not highly variable among the three sampling periods, averaging 36 +
0.42 ppt. _

3.2.2 Short-lived radium isotopes: ***Ra and **Ra

224Ra and *Ra increased from high tide to low tide at all times in the Futch Creek
estuary (with the exception of one sampling day in April 2001 where the A"Rawas
nearly zero) (Table 3, Figures 7b-c). Inflowing 22%Ra at high tide was considerably lower
on average in November 2001 (14.7 + 3.2 dpm 100L™) than in April 2001 (25.7 +
3.3dpm 100L™7) or April 2002 (26.7 + 3.6 dpm 100L™").

3.2.3 Long-lived radium isotopes: 22Ra and ***Ra

22%Ra increased from high to low tide at all times in the Futch Creek estuary
(Table 3, Figures 8a-b). The high tide 2*°Ra activities were elevated in November 2001
(18.0+ 1.3 dpm 100L7) relative to April 2002 (11.7 + 0.4 dpm 100L1), similar to a
pattern observed in the Pages Creek estuary, though the April 2001 high tide values were
different between the two estuaries. Low tide >*°Ra was much less variable from season
to season, averaging 19.7 £ 2.9 dpm 100L for all three seasons.

228R a generally increased from high to low tide in the Futch Creek estuary, with
two exceptions, one in April 2001 and one in November 2001 (Table 3, Figure 8c). On
these days, the high tide 228Ra activity was unusually high, at 28.7 dpm/100L and 33.3
dpm 100L", respectively. Average high tide **Ra in November 2001 was 25.1 +4.7
dpm 100L", and 16.1 + 1.7 dpm 100L" in April 2002. As with **Ra, low tide **Ra
activities tended to be less variable than high tide *®Ra activities, averaging 26.8 43
dpm 100L"! for all seasons.

3.2.4 Radon-222
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222Rn always increased from high to low tide in the Futch Creek estuary, and
showed generally higher A**’Rn in the outflow than was observed in the Pages Creek
estuary (Table 3, Figures 9a-b). Average inflowing **’Rn values were highly consistent
between November 2001 and April 2002 (3.5 + 0.6 dpm L™ and 3.2 + 1.2 dpm L,
respectively). Low tide >?Rn was, on average, higher in November 2001 (23.7 + 7.2
dpm L) than in April 2002 (15.7 £ 10.1 dpm L™). Though always positive, A”?Rn does
not show any clear relationship to tidal stage in November 2001.

3.3 Pages Creek and Futch Creek estuary Time Series

3.3.1 Salinity

The salinity profile during the Pages Creek estuary November 2001 time series
shows a fairly constant salinity (at ~36.41 ppt) for a few hours before and after high tide
(Figure 10a). Just before low tide, the salinity dips to 36.30 ppt, then jumps up again to
36.46 ppt before falling to a low of 36.07 ppt at low tide. After low tide, the salinity rises
quickly to 36.47 ppt, then returns again to ~ 36.41 ppt (Table 4). Water depth data fell
into a sinusoidal curve, and did not show any pulses that correlate to the high salinities
just before and just after low tide.

The April 2002 Pages Creek and Futch Creek time series did not show the same
fluctuations in salinity around low tide (Table 4, Figures 10b and 10c). In Pages Creek,
salinity varied between 36.16 ppt at high tide and 35.16 ppt at low tide. In Futch Creek,
the salinity variation was larger (35.99 ppt at high tide and 30.84 ppt at low tide).

3.3.2 Short-lived radium isotopes: ***Ra and ***Ra

224Ra from the November 2001 time series at Pages Creek and the April 2002
time series at Futch Creek showed little relationship to tide stage (Table 4, Figure 10a and
10c). In both of these series, the highest 224Ra value was observed well before full low
tide; in November the highest >**Ra corresponded to the brief high salinity peak before
low tide. A second high **Ra value was observed just at the second high tide (18:00-
19:00 hrs). In the April 2002 Pages Creek time series, the lowest >*Ra was observed just
after high tide, with a peak in 24Ra occurring at low tide, followed by more scattered

values on the subsequent rising tide (Figure 10b).
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223Ra tended to be highest at low tide in all three time series (although a second
maximum was observed in November 2001 at high tide, corresponding to the second
peak in 224Ra) (Fi gures 11a-c). High tide 23R a activities tended to be low, but were not
necessarily the lowest within any series.

3.3.3 Long-lived radium isotopes: ***Ra and *°Ra

November 2001 time series **Ra and ?®Ra water column activities did not
correlate well with salinity changes across the tidal cycle (Table 4, Figures 12a and 13a).
However, most of the ?2°Ra and ??®Ra values from this sampling period fell within the
10% error.

Pages Creek “*°Ra during the April 2002 time series, in contrast, correlated well
with the tidal cycle, with the highest 2°Ra just after low tide, and the lowest *°Ra just
before high tide (Figure 12b). The pattern of **Ra activities was similar to that of 226Ra,
with one high *®Ra value occurring on the falling tide at mid-tide (Figure 13b).

Futch Creek *°Ra and *®Ra in April 2002 showed the strongest correlation
between salinity and long-lived radium isotopes, with the highest 226Ra and ?*Ra
activities observed just at low tide, and the lowest *Ra and ***Ra activities observed just
at high tide (Figures 12c and 13c).

3.3.4%*Rn

222Rn water column activities from the Pages Creek time series in both November
2001 and April 2002 showed a strong correlation with the tidal cycle and with salinity
(Table 4, Figures 14a-b). In both time series, the lowest 222R1 activities were observed
near full high tide, and the highest activities at or just after full low tide.

3.4 Rich Inlet and Mason Inlet — High tide/Low tide pairs

3.4.1 Salinity

April 2002 high tide/low tide inlet measurements were taken at the mouths of
each inlet, where they connected to the Atlantic Ocean, and also where they intersected
the Intracoastal Waterway (ICW) (Figure 2). Salinity values, however, were not highly
variable as a function of sampling location within the inlet, or from inlet to inlet (Table 5,

Figure 15a). ASal was always small and decreased from high tide to low tide, averaging -
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0.12 ppt in Rich Inlet and -0.09 ppt in Mason Inlet. The single November 2001 inlet
measurement, made at low tide, showed a higher salinity (36.5 ppt) than was observed at
high or low tide in the inlets in April 2002.

3.4.2 Short-lived radium isotopes: ***Ra and 2ZRa

In April 2002, the 22*Ra always increased in the inlets from high to low tide, and
were similar from inlet to inlet (Table 5, Figure 15b). Average high tide ***Ra was 12.3
3.5 dpm 100L" at Rich Inlet and 9.4 + 1.9 dpm 100L! at Mason Inlet; average low tide
2%Ra values were 24.1 + 2.3 dpm 100L™" and 26.9 + 3.7 dpm 100L, respectively. While
the A?**Ra in Mason Inlet was higher at the ICW than at the mouth, this was not true at
Rich Inlet. However, the inflow **Ra in Rich Inlet at the ICW was elevated relative to
the inflow 2*Ra in Rich Inlet at the mouth. 22Ra showed similar trends to ***Ra (Figure
15c). The November 2001 low tide **Ra and *’Ra values in Rich Inlet were similar to
the April 2002 low tide values.

3.4.3 Long-lived radium isotopes: ?8Ra and **°Ra

In April 2002, 226Ra and **Ra generally increased from high to low tide in the
inlets, though the high tide-low tide 226R a differences in Rich Inlet fell mostly within a
10% measurement error (Table 5, Figures 16a-c). A*®Ra was also small in Rich Inlet,
but the A?®Ra in Mason Inlet was larger than the estimated error. The lone November
2001 Rich Inlet low tide sample had considerably higher 226Ra and **Ra activities than
any of the April 2002 samples (Figure 17).
3.5 Fresh water: springs, streams, and groundwater

The Pages and Futch Creek springs show fairly consistent values from season to
season, and are similar from site to site (Table 6). The springs were elevated in “’Rn
relative to the streams, and tended to be enriched in ??°Ra relative to **Ra (Figure 18).
The exception to this is the November 2001 Pages Creek stream (Table 6, not plotted in
Figure 18), which had a salinity of about 30 ppt. This sample was collected during the
spring tide, and the streambed had been inundated with inflowing ICW water but had not
yet been flushed out by fresh water. This stream sample is therefore not representative of

zero-salinity endmember stream inputs to the estuary.
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Particulate *Ra and ??®Ra activities were measured in November 2001 from the
Pages Creek spring (salinity ~ 0.2 ppt) and the Futch Creek Scotts Hill Loop stream
(salinity ~ 10 ppt). Particulate 226R a activities in both spring and streém were small, only
about 3% and 1% of their dissolved >*Ra activities, respectively (Table 6). Both spring
and stream had negligible particulate 228Ra activities.

Most groundwater samplesbhad salinity less than 1 ppt (Table 7). Both Castle
Hayne and Peedee groundwater tended to be low in 228R a relative to *°Ra, though both
226R 2 and *®Ra activities were generally higher in July 2000 than in April 2002 (Table 7,
Figure 19).

222Rn activities in groundwater were up to three orders of magnitude higher than
activities in the estuaries, with the highest radon activities found in the Castle Hayne
groundwater (3000 — 9000 dpm L!) (Table 7). Castle Hayne groundwater **’Rn was also
about an order of magnitude higher than the radon activities in the springs, which ranged
from 184 — 600 dpm L.

4. Discussion

A primary goal of this study is to determine whether the Pages and Futch Creek
estuaries export radium and radon, and furthermore to determine the principal sources of
these isotopes both to the estuaries and ultimately to the coastal ocean. An additional
goal is to determine whether the chief inputs of each isotope are similar from estuary to
estuary and whéther they can be correlated to seasonal and temporal cycles (e.g. monthly
tidal stage and daily tidal stage).

The mass balances of the four radium isotopes and of >’Rn were evaluated within
each estuary, and the potential sources of these isotopes to each estuary were considered.
These potential sources included inflowing water from the ICW, stream inputs, discharge
from springs originating from the confined Castle Hayne aquifer, discharge from the
surficial aquifer, and regeneration within both the estuarine bottom sediments and within

tidal marsh sediments.

153




Of these potential inputs, high tide inflow, spring, and stream radium and radon
activities were measured directly. Surficial aquifer radium and radon activities were not
directly measured and this input source cannot be easily distinguished from several other
potential inputs with the existing data set. Both the sediment-derived fluxes and the
stream inputs are likely to contain surficial aquifer discharge, but neither can be
considered as representative of surficial aquifer endmember radium or radon activities.
Fluxes from the estuarine bottom sediments must have included, in the case of the
shorter-lived isotopes, regeneration from Th parents as well as aquifer discharge.
Additionally, streams entering the estuaries are groundwater-fed, and the presence of
springs in some streambeds suggests that these streams may contain inputs from both
surficial and confined groundwater.

4.1 Expectations/predictions from previous radium- and radon-based groundwater
studies

Previous work at North Inlet, South Carolina, a site with similar geologic terrain
to southeastern North Carolina, has observed higher outflow activities than inflow
activities for all four radium isotopes (Bollinger and Moore 1993, Rama and Moore 1996,
Krest et al 2000). Additionally, several studies in coastal South Carolina determined that
groundwater inputs (defined as the upward advection of pore water, driven by an inland
hydraulic head) were required to explain not only the excess 2*°Ra and 2*®Ra (defined as
the activity of each isotope in the low tide outflow after high tide inflow activity has been
subtracted) in the outflow from the North Inlet salt marsh, but also, to a large extent, the
excess **Ra and ?*’Ra activities (Rama and Moore 1996; Crotwell 1998; Krest et al
2000).

Based on these South Carolina studies, groundwater discharge to the Pages and
Futch Creek estuaries, rather than regeneration within the sediments, was predicted to be
a principal source of observed excess “*°Ra, as well as **Ra and ?’Rn. The decay
constant for ??°Ra is small (A = 4.3 x 10 yr'!) and the resulting small rate of regeneration
within the estuarine or tidal sediments was not likely to be a significant source of excess

225Ra to the estuaries during the time scale of interest. For 228Ra, the decay constant is
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larger (.= 1.2 x 10 yr'"), possibly resulting in some regeneration within the sediments
on the time scales in this study. However, the rate of supply of this sediment **Ra by
diffusion across the sediment-water interface is likely to be much smaller than the rate of
supply via groundwater-driven advection, so that sediment regeneration is not likely to be
a significant source term.

In the case of 2*’Rn, the decay constant is much larger (A = 6.7 x 10" yr'™),
suggesting that the sediments could be a significant source of *?Rn to the estuaries
during the time scales of interest. However, because 222R7 activities tend to be highly
enriched in groundwater from a uranium-enriched limestone aquifer, and have been
found to be as much as three orders of magnitude greater than seawater 222Rn activities,
the springs were likely to be a dominant source of 222Rn (Swarzenski et al 2001).

The radiocarbon data has shown that during the three sampling seasons
considered in this study, the fresh water budgets of these estuaries were generally
controlled by springs originating from a confined aquifer, rather than by stream inputs or
by fresh discharge from the surficial aquifer (Chapter III). We therefore predicted that
the springs would be the primary source of the long-lived radium isotopes “**Ra and **Ra
(dissolved and/or particulate), as well as 222Rn, to the estuaries.

The *Ra and **Ra estuarine budgets, however, were expected to be controlled
by some combination of groundwater discharge and regeneration, desorption, and decay
within both bottom and tidal sediments. The decay constants for 22%Ra and *Ra (A=6.8
x 10" yr'! and A =2.3 x 10" yr'’}, respectively) are large enough that the sediments could
provide a significant source of these isotopes to the estuaries.

4.2 Estimating excess radium isotopes and 222Rn derived from springs

While the Futch Creek estuary showed a low tide excess (low tide activity — high
tide inflow activity) of the four isotopes of radium and 22Rn relative to high tide inflow
during all three sampling seasons, the Pages Creek estuary exported radium and radon
during both April sampling seasons but not always during the November season.

To estimate the spring contribution to the excess of each radium isotope and to the

excess of *?Rn within each estuary, the activity of each of the tracers in the spring
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discharge is multiplied by the percent fresh (and by the percent of the fresh contributed
by springs) in the outflow:

% spring contribution = % fresh * % spring * spring activity 1)
excess tracer

The radiocarbon data suggest that spring inputs were 100% of the total fresh
water input to each estuary during April 2001 and April 2002, and to the Futch Creek
estuary during November 2001, and that spring inputs were 10-50% of the total fresh
water input to the Pages Creek estuary during November 2001 (Chapter III). Therefore,
% spring = 1 for all times except at Pages Creek in November 2001. To estimate a
maximum spring contribution, spring inputs to the Pages Creek estuary in November
2001 are assumed to be 50% of the total fresh water input. Results from this calculation
are shown in Table 8. A maximum and minimum range of the percent spring
contribution is shown, where maximum spring contribution uses the highest observed
spring radium or radon activity (April 2001 McMillan spring for radium and November
2001 Saltwood spring for *’Rn), and minimum spring contribution uses the lowest
observed spring radium or radon activity (April 2001 Saltwood spring for radium and
April 2002 Bayshore spring for *’Rn) (Table 6).
4.3%%2Rn

4.3.1 Excess **’Rn primarily supported by springs

The springs were an important source of *’Rn to both estuaries, as predicted, and
were the dominant soufce to the Futch Creek estuary during most sampling days (Table
8). Using the maximum observed **?Rn in the springs (November 2001 Saltwood
spring), the springs contributed more than enough 2*?Rn to support the observed excess
222Rn in the outflow during nearly all sampling periods. In April 2002, the maximum
?2Rn spring contribution is several times the observed excess; however, it should be
noted that the *’Rn in the springs was considerably lower in April 2002 than in
November 2001, and the minimum percent contribution may be closer to the true spring
input during this period (Table 6). It is also possible that *’Rn evasion to the atmosphere
accounts for the greater calculated spring contribution relative to observed excess 22Rn

atmospheric fluxes of **’Rn are evaluated in Chapter V). However, even using the
P p g
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maximum observed spring *’Rn activity to estimate spring contributions, the springs did
not provide all of the 222Rn to the Pages Creek estuary during any sampling day in
November 2001, or even to the Futch Creek estuary on the day of the highest spring tide
(November 16, 2001). '

4.3.2 Time series *?Rn correlated with salinity

222Rn water column activities from the Pages Creek estuary time series in
November 2001 were strongly correlated with salinity as well as with the daily tidal
cycle, although the relationship was not perfectly linear (Figure 20a). The Futch Creek
estuary April 2002 time series showed an even more linear mixing relationship between
salinity and ???Rn (Figure 20b). When this April 2002 time series is extrapolated back to
the zero-salinity point, it is apparent that the 222Rn activities in most of the springs were
enough to support all the observed excess 2221 in both estuaries (Figure 21).

It is also worth noting that the excess *’Rn was always larger in the Futch Creek
estuary than in the Pages Creek estuary, and, furthermore, that while radon was always
higher in the outflow from Futch than in the inflow, this was not always true in Pages. Of
the two times when radon appeared to be lower in the outflow at Pages, one (November
12, 2001) showed an unusually elevated inflow 2??Rn activity, and the other (April 13,
2002) showed a small HT-LT difference that was within error measurements. The
overall stronger outflow >*’Rn signal in Futch is likely to be the result of the stronger
spring influence in that estuary, further evidenced by the consistently larger (spring-
dominated) salinity changes from high to low tide at Futch relative to Pages.

Although the time series 222R1 activities fell close to a simple inflow-spring
salinity mixing line, the Pages Creek estuary November 2001 time series 222Rn showed
deviations from simple mixing. These 222Rn samples were collected only on the falling
tide, and mid-tide 2*’Rn activities fell above the mixing line.

Hourly salinity samples collected at Pages Creek in November 2001 showed a
feature that did not appear in the hourly salinity data at Pages in April 2002: a peak in
salinity two hours prior to full low tide that does not correspond to tidal changes in water

depth (Figure 22a). However, increased April 2002 sampling resolution as provided by
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the YSI Multiprobe (measuring salinity every two minutes) demonstrated that this
salinity fluctuation was a regular feature in the Pages Creek estuary, occurring about two
hours prior to low tide on every tidal cycle (Figure 22b). This feature may represent
drainage of marsh pore waters, possibly having salinity greater than seawater as a result
of evapotranspiration within the marsh.
4.4 Long-lived radium isotopes: ***Ra and ***Ra

4.4.1 Excess *°Ra: substantially supported by springs

Spring 226Ra activities were only sufficient to support all of the low tide excess
226Ra (when there was excess) in the April 2001 Futch Creek samples and in two of the
November 2001 Futch Creek samples (Table 8). On other sampling days in November
2001 and in April 2002, the springs contributed a substantial percentage, but not all, of
the excess 22°Ra to the Futch Creek estuary. In the Pages Creek estuary, April 2001 and
November 2001 spring contributions to the 26Ra budget were 1-20% of the excess 22Ra
in the water column, while April 2002 spring input corresponded to up to 50% of the total
excess *°Ra.

4.4.2 Excess **Rn: minimally supported by springs

For ?*Ra, spring inputs were never sufficient to supply the all of the observed
excess 228Ra in the outflow of either estuary (Table 8). Although the Futch Creek estuary
April 2001 ??®Ra was more spring-influenced (spring contributions of 53-92% of the
excess 22®Ra), during all other times, **Ra from the springs was responsible for less than
25% of the total excess 2?®Ra observed in the outflow from either estuary.

4.4.3 A**°Ra and A***Ra normalized to high tide/low tide salinity difference

Overall, in the Futch Creek estuary, spring contributions to the 22Ra and **Ra
budgets were strongest in April 2001 (corresponding to the largest ASal and the smallest
A?*®Ra), and weakest in April 2002 (which had intermediate ASal and the largest A>°Ra).
When the Futch Creek estuary A”°Ra and A**®Ra values are normalized to their high
tide-low tide salinity differences (ASal), the relative heights of the bars give an indication
of the relative importance of outflow *Ra and **Ra additions that did not originate from
the springs (Figure 23). In November 2001, the A**Ra/ASal and A**®Ra/ASal show the
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highest relative contribution of both 226Ra and ®Ra from a non-fresh (therefore non-
spring) source occurring on November 16, at the full spring tide. This suggests that the
source(s) of the non-spring-derived excess *2Ra and ***Ra could be influenced by the
tidal cycle, possibly resulting from enhanced flow due to tidal pumping through bottom |
sediments.

Although the change in radium relative to salinity differences in the Futch Creek
estuary is largest in November 2001, this is largely due to the small high/low tide salinity
differences during that season relative to the April sampling seasons. The absolute
A??Ra and A?®Ra values are higher in April 2002, and smaller in April 2001 (Figure 8,
Table 8). In November 2001, Castle Hayne and surficial aquifer well head levels 15 km
north of Futch Creek were at an 18-yéar low (Figure 24). The prolonged drought may
have led to reduced supply of fresh water from the surficial aquifer, and therefore
increased overall salinity in the marsh outflow. The drought continued through April
2002, but localized precipitation occurred during that sampling period, and there is some
evidence that local precipitation events may have a greater effect on the salinity budget of
these estuaries than seasonal changes in surface water flow (Gramling et al 2003).

In the Pages Creek estuary, spring contributions were generally responsible for
only a small fraction of the excess 226Ra and 2*®Ra, with the highest relative spring 22Ra
signal (14-54%) occurring in April 2002 (which had the smallest average A%*Rain
Pages). Normalizing the Pages Creek estuary A*°Ra and A?®Ra values to their salinity
differences demonstrates that again, November 2001 *Ra and *®Ra additions from a
non-spring, non-fresh source were highest relative to the excess 2%6Ra and **Ra (Figures
25a-b). Additionally, as in the Futch Creek estuary, the largest relative non-spring *°Ra
additions occurred during the full spring tide on November 16, 2001 (although, unlike in
the Futch Creek estuary, the absolute A?*Ra was also high on this day) (Figure 5).
However, 2®Ra showed almost no change from high to low tide during the full spring
tide on November 16, 2001, unlike ?®Ra in the Futch Creek estuary (Figure 5).

An additional point to note is that in both the Pages and the Futch Creek estuaries,

negative high/low tide differences in 226Ra and 2*®Ra occurred on days with inflow **°Ra
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and %®Ra values that were elevated relative to the average inflow values. This high tide
variability is on the same scale as the overall high/low tide radium differences (whereas
the low tide ?°Ra and **®Ra values tend to be less variable). Inflowing waters to both
estuaries may have been elevated in radium relative to ocean radium activities, possibly
as a result of water cycling through the creeks (with a residence time of ~0.5 day) and re-
entering the ICW at low tide. This effect is likely to be stronger in the Pages Creek
estuary, located just downstream of Futch Creek along the ICW (Figure 2). Therefore,
although the export of the short-lived isotopes is more consistent and generally higher in
the Futch Creek estuary, when the variable November 2001 Pages Creek inflow radium
activities are taken into account it is less clear whether the non-spring source of *Ra and
228Ra was stronger in Futch, or whether additions from this source are similar in both
estuaries but tended to be more masked in Pages.
4.5 Non-spring sources of ?2Ra and ***Ra

As demonstrated by Table 8, in addition to the springs, there must have been one
or more sources within the estuaries supplying 22Ra and 2*®Ra during most sampling
times. This source would have to account for most of the excess **’Ra and ***Ra in the
Pages Creek estuary, and it would also be an important source to the Futch Creek estuary,
particularly of 228Ra.

4.5.1 Stream **°Ra and **Ra inputs

Radiocarbon data suggest that the other potential source of fresh water to the
estuaries, the streams, contributed 0% of the total fresh water input to the Futch Creek
estuary at all times and to the Pages Creek estuary during April 2001 and April 2002, but
contributed 50% to 90% of the total fresh water input in November 2001. However, as
indicated by the ASal, the total fresh water input was very small during that sampling
period, and stream inputs (even using the highest radium and radon activities observed in
any stream sample) contributed less than 5% of the observed excess of any tracer.

4.5.2 Other sources: surficial aquifer advection, regeneration in sediments

Other potential sources of *’Ra and ?**Ra include advection from the surficial

aquifer (driven by tidal pumping) and regeneration within the surficial aquifer sediments
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and the marsh sediments. As discussed above (section 4.1), regeneration of 226Ra is not
expected to be a significant source term (and may be only a minor source term for 228Ra
as well), suggesting that surficial aquifer advection may have supplied the additional
excess 2’Ra and ?®Ra. This is discussed in more detail below (section 4.8).

4.6 Short-lived radium isotopes: 2Ra and ***Ra

4.6.1 Excess ***Ra and **Ra: minimally supported by springs

As with 2®Ra, the springs (and streams) supply, in most cases, a negligible
fraction of the total excess of each of the short-lived isotopes (Table 8). The 22Ra and
224Ra budgets were expected to be largely controlled by regeneration, desorption, and
decay within the estuarine bottom or tidal marsh sediments.

4.6.2 Comparison of excess 28Ra and **Ra with tide stage

A possible indicator of the magnitude of radium regeneration and release from the
tidal marsh sediments (rather than from the estuarine bottom sediments) is to compare the
degree of inundation of the tidal marshes in each estuary with excess 224Ra and *Ra in
the water column. The highest tide stage of our sampling seasons occurred during the
spring tide of November 2001, with the highest high tide about half a meter higher than at
any time during sampling in April 2001 (halfway to spring tide) or April 2002 (during
neap tide). However, in the Pages Creek estuary, November 2001 showed the smallest
average excess >>*Ra and **’Ra of all the sampling periods, and in some cases the inflow
was higher than the outflow. In the Futch Creek estuary, although ***Ra and *’Ra were
exported at all times, the highest A***Ra and A**Ra occurred in April 2002, and not in
November 2001. Thus, the observed excess *’Ra and **Ra in November 2001 were not
likely to be directly related to degree of inundation.

Although in November 2001 the Pages Creek estuary shows little high/low tide
change in 2*Ra, and a decrease in 2**Ra on the outflow during and after the spring tide,
there is no corresponding decrease in 2**Ra or ***Ra activity in the outflow in Futch
Creek. This more consistent export of the short-lived isotopes at Futch did not result

from estuarine differences in spring input. With respect to the long-lived isotopes of
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radium, Futch Creek showed more spring influence than Pages, but even in Futch the
springs rarely supplied more than 10% of the excess “**Ra and 22Ra (Table 8).

When the November 2001 Futch Creek estuary A**Ra is normalized to the high
tide-low tide salinity difference ASal, the highest A***Ra/ASal occurs at the spring tide, or
the highest monthly tide stage (Figure 26a). A similar pattern is observed for
A*Ra/ASal in November 2001 (Figure 26b). However, in the Pages Creek estuary, no
such pattern is observed, and during the full spring tide of November 16™, both ***Ra and
223Ra were higher in the inflowing water than in the outflow (Figures 27a-b).

4.7 High tide/low tide pairs vs. time series sampling

To determine whether sampling twice per tidal cycle was a sufficient proxy for
the full range of radium and radon tidal variations in these estuaries, data collected across
a 12-hour time series were compared with data collected at high and low tide alone.
Though this appeared to be a fair assumption for radon in both the November 2001 Pages
Creek time series and the April 2002 Futch Creek time series (Figures 14, 20), the radium
time series showed more scatter in both creeks and during both seasons (Figures 10-13).

In the November 2001 Pages Creek time series, there were fluctuations in all four
radium isotope water column activities (as well as in salinity) that were not linearly
related to tide stage, nor did the maximum and minimum radium values correspond to the
low or high tide (Figures 10a, 11a, 12a, 13a). This suggests that for this season, at least,
simple high tide/low tide sampling did not capture radium activity variability as a
function of the tide.

The April 2002 Pages Creek radium isotope time series still showed scatter that
deviated from a simple linear relationship to tide, but the high/low points within the tidal
cycle tended to capture, respectively, the low/high radium values for all four isotopes
(Figures 10b, 11b, 12b, 13b). The April 2002 Futch Creek time series longer-lived
radium isotopes showed a close relationship to tide stage, but the short-lived isotopes
showed no relationship at all, suggesting that the processes controlling the short-lived
isotopes of radium are not strongly coupled to those controlling ?22Rn and the long-lived

isotopes of radium within either estuary (Figures 10c, l1c, 12c, 13c).
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4.8 Radium activity ratios

Inflow, spring, and stream inputs, therefore, are not sufficient to support most of
the observed excess radium activities in either the Pages or Futch Creek estuaries. The
remainder of the observed excess may have been supplied by seepage through estuarine
bottom sediments, incorporating surficial aquifer fluxes as well as regeneration and
release of radium (for 228Ra, ?Ra, and ?*Ra).

4.8.1*Raf*Ra

In the absence of direct measurements of surficial aquifer activities or of
regeneration within the sediments, one method of isolating these inputs is to consider the
activity ratios of the radium isotopes. The ratio of 228R a to 2*Ra activity, as described
above, gives an indication of the relative influence of the springs, originating in a
uranium-enriched limestone aquifer. The average 226R a:*®Ra:***Ra:***Ra activity ratio in
the springs was 1:0.42:0.05:0.55, suggesting that spring-dominated discharge should have
a 2%Ra/”®Ra AR ~ 0.42, possibly as low as 0.25 (Tables 9-10) (Figures 18-19, Figure
28). In the open ocean, the activity ratio of **Ra to 226Ra is close to 0.5, though this AR
can increase to > 1 near the coast (with lower overall Ra activities) (Moore 1996,
Crotwell 1998, Moore 2000). However, the outflow 228Ra/**Ra AR in both creeks was
close to 1.45, and generally increased from high to low tide (Tables 11-13), suggesting
that the source of the additional excess radium has a *Ra/**Ra AR higher than either
springs or inflowing ICW water. .

Pages Creek estuary high tide ?®Ra/**°Ra activity ratios were much more variable
among (and within) the different sampling periods than were the low tide activity ratios
(Table 11, Figures 29a-b). April 2001 high tide *®Ra/**®Ra AR’s were the highest,
averaging 1.66 + 0.17, compared to 1.45 +0.12 and 1.03 + 0.31(November 2001 and
April 2002, respectively). In contrast, low tide 228RaRa AR were highly consistent
among the sampling periods, averaging 1.48 + 0.11 for all low tide values (Figure 30). In
the Futch Creek estuary, the 228Ra/*?Ra was also more variable at high tide (1.38 + 0.23)
than at low tide (1.36 + 0.14) (Table 13, Figures 31-32).
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The low tide damping of the variable high tide values suggests that a source
carrying a high 228Ra/*®Ra AR is mixing with low 22Raf**Ra spring inputs. April 2001
showed the most spring influence at the Futch Creek estuary, as well as the smallest
excess 2°Ra and ??®Ra, and any additional inputs from a high 228p a/**Ra source must
have been small.

Additionally, the excess *°Ra at Pages was smallest and most spring-influenced
in April 2002, but the overall 228R a/**®Ra increased from high to low tide. Mass balance
calculations of the residual excess 2°Ra and 2**Ra in the Futch Creek estuary in April
2002 (the excess after subtracting inputs from springs and streams) suggest that the AR
ranged from 5:1 to 8:1. Pore water and estuarine sediment analyses would be required to
define additional constraints on the input sources.

The high residual (non-spring-derived) 228Ra/*®Ra AR in the outflow is similar to
estuarine pore water radium 228Ra/**Ra activity ratios from North Inlet, SC, which range
from about 5:1 to 11:1 (Rama and Moore 1996; Krest et al 2000). Because the
concentration of radium in the estuaries is small relative to potential pore water
concentration, a small volume addition from pore waters with elevated concentrations
such as those at North Inlet could have a disproportionately large impact on the surface
water activities.

4.8.2***Raf*Ra

The difference between the high tide >**Ra/*”®Ra AR and the low tide 22Ra*®Ra
AR in each estuary can also provide information about the input sources. Although
2R a/*®Ra is equal to one at secular equilibrium, the average spring 224R a/*®Ra was
enriched in 2?*Ra relative to >*®Ra, with an AR ~ 1.3. Itis important to note that, as is
apparent from the maximum potential spring contributions to the estuarine radium
budgets, the springs were depleted in both *Ra and **Ra relative to *°Ra and were
generally not a primary source of 224Ra or ®Ra (and that spring inputs would dilute the
average 224Ra and “®Ra activities in the estuaries). Open ocean 224Ra/**®Ra is essentially
zero, but increases with proximity to the coast. Inflowing high tide 22%Ra/**®Ra to Rich

and Mason Inlets ranged from 0.7-1.5, but averaged less than 1.0. Inlet 22'Ral**®Ra
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always increased from high to low tide in April 2002, averaging about 1.5 at low tide
(Table 14). The low tide 224Ra/**®Ra AR in the November 2001 sample, however, was
much lower (0.67).

Surface pore water **Ra activity may be enriched relative to 228Ra activity if the
parent of 224Ra, 8Th, becomes preferentially concentrated in surface sediments. One
pbssib]e mechanism for this includes mixing of deep with surface sediments as a result of
bioturbation, where 2®Ra, *Th, and ***Ra are supplied to surface sediments and 22%Ra
and ***Ra are repeatedly removed by tidal exchange, thus increasing the 28T1h/*®Ra in the
surface sediments to greater than one (Rama and Moore 1996). 22R a may also become
enriched in pore water relative to 28R a as a result of alpha recoil from the decay of 22Th
bound within aquifer solids.

Pages Creek high tide-low tide changes in 224R a/*®Ra varied among the three
sampling seasons (Table 11, Figures 33-34). Though during April 2001 and November .
2001 the inflowing **Ra/**®Ra activity ratios were within 1.09 + 0.08, April 2002 high
tide *Ra/***Ra activity ratios were elevated (1.83 £ 0.52), reflecting the low high tide
228R a values during that sampling period.

The Futch Creek estuary high/low tide changes in 229R a/”Ra AR showed no:
pattern in April 2001 and April 2002, but the 224Ra/**®Ra AR showed a consistent
increase from high to low tide throughout the November 2001 sampling period (Table 12,
Figures 35-36). When all sampling seasons are considered, high tide 2R o/ Ra was
much more variable (AR = 1.09 + 0.61) than low tide ?*Ra/®Ra (AR = 1.34 + 0.15).
The high tide values appeared to be grouped by season, with November at the low end
and April (2001 and 2002) at the high end.

224R a/*®Ra activity ratios in the Futch Creek estuary showed a similar pattern to
228R a/*®Ra: highly variable in the inflow, and more constant in the outflow. Again, the
difference in the high/low tide trends in 22Ral*®®Ra between the two estuaries may be
related to the much higher 22*Ra entering Pages Creek at high tide, relative to Futch
Creek inflow ***Ra activities, as a result of inflow from Rich Inlet.

4.8.3”Raf*Ra
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As with 2*Ra/***Ra, an elevated “’Ra/**Ra AR (greater than ~0.05) also
suggests additions of *’Ra as a result of regeneration and release within sediments. The
average ’Ra/*’Ra AR in the Pages and Futch Creek springs is ~ 0.06.

22Ra/**®Ra was higher in Rich Inlet relative to Mason Inlet overall, and generally
increased from high to low tide in the inlets, reflecting additions of *’Ra from the marsh
sediments. Both Pages and Futch Creek estuary “’Ra/**Ra AR’s also increased from
high to low tide during all sampling days in April 2001 and April 2002 (Tables 11-12,
Figures 37-38). However, November 2001 Pages Creek estuary “’Ra/**°Ra values
mostly decreased from high to low tide, reflecting the positive change in A?*°Ra on those
days (as the A*’Ra was quite small).

4.84**Raf*Ra

As with ’Ra/**Ra, ’Ra/**'Ra activity ratios can reflect source ratios. **’Ra and
?26Ra are both from uranium-series decay chains, and are consequently elevated in the
carbonate aquifer relative to the thorium-series daughters ***Ra and **Ra. April 2002
2Ra/**Ra AR values tended to decrease in both Rich and Mason Inlets from high to low
tide, suggesting that the primary source of the excess *’Ra and ?**Ra to the inlets is
relatively enriched in 224Ra (Table 14).

In the Pages Creek estuary, high tide-low tide changes in the *’Ra/***Ra AR
(A*Ra/**'Ra) reflected the differences between the April 2001/2002 short-lived radium
isotopic patterns and the November 2001 short-lived radium isotopic patterns. In April
2001 and April 2002, the >’Ra/**Ra AR always increased from high tide to low tide,
because the **’Ra increased more than the **Ra (Figure 39, Table 11). In November
2001, however, the A’Ra was generally small. Overall, the supply of the short-lived
isotopes to the Pages Creek estuary in November 2001 was small. Although Futch Creek
estuary ***Ra and **’Ra activities increased from high to low tide at all times, the
?2Ra/Ra AR showed no trend with respect to season, tide stage, or salinity difference

(Table 12, Figure 40).
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5. Conclusions

Outflow radium and radon activities were almost always higher than inflow
activities in the Futch Creek estuary. The Pages Creek estuary was less consistent in
exporting any of these tracers, particularly during the November 2001 season. During
most sampling seasons, springs originating from a confined aquifer were the only
~ significant fresh water input to both estuaries; the larger tidal salinity variations in the
Futch Creek estuary suggest that it is more spring-dominated than Pages.

Because the spring activities of 22Rn were so large, spring input of 222Rn
dominated the radon budget within both estuaries. Discharge from the artesian springs
accounted for all of the excess ??Rn during most sampling days in the Futch Creek
estuary, and on all April 2002 sampling days in the Pages Creek estuary. Spring inputs
also accounted for all of the excess >Ra at the Futch Creek estuary during sampling in
‘April 2001, and 20 — 100% of the excess 2*°Ra at the Futch Creek estuary during
November 2001 and April 2002. In the Pages Creek estuary, spring inputs accounted for
1 — 54% of the observed excess ***Ra during all sampling periods.

A source in addition to springs, streams, and inflow from the ICW is required to
support most of the observed excess 228Ra, *Ra, and **Ra at Futch, and to support
excess 26Ra, 2®Ra, 2°Ra, and ?*'Ra at Pages. Residual (non-spring, stream, or inflow)
excess radium activity ratios show that the additional input was generally high in 28Ra
relative to ?Ra, and was probably also elevated in 22Ra relative to 2*Ra. The source of
the 2?Ra and 2’Ra may be seepage through the estuarine bottom sediments, driven by
both advection of surficial groundwater and tidal pumping. Additional elevated 22Ra
and 2Ra in the outflow was most likely derived from regeneration within the tidal marsh
sediments. Pore water radium activities have been observed to be orders of magnitude
higher than surface water activities, so that a small flux would be sufficient to alter the

surface water budgets considerably.
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Table IV-1: Radium and radon sampling data for Pages and Futch Creek estuaries

Sampling Location Sampling Volume Collection method Dissolved Ra
Date (L) A=manual bilge pump filtration (uM)
B=automatic bilge pump ‘
Estuaries: HT/LT pairs

Pages and Futch Creeks HI/LT p: Apr-01 50.0 A unfiltered
Pages Creek-High Tide 11/12/01 43.4 A unfiltered
Pages Creek-Low Tide 11/12/01 439 A unfiltered
Futch Creek-High Tide 11/12/01 41.0 A unfiltered
Futch Creek-Low Tide 11/12/01 41.8 A unfiltered
Pages Creek-High Tide 11/13/01 41.6 A unfiltered
Pages Creek-Low Tide 11/13/01 44.6 A unfiltered
Futch Creek-High Tide 11/13/01 41.3 A unfiltered
Futch Creek-Low Tide 11/13/01 42.1 A unfiltered
Pages Creek-High Tide 11/15/2001 41.8 A unfiltered
Pages Creek - Low Tide 11/15/2001 43.2 A unfiltered
Futch Creek-High Tide 11/15/2001 413 A unfiltered
Futch Creek-Low Tide 11/15/2001 31.6 A unfiltered
Pages Creek-High Tide 11/16/2001 42.4 A unfiltered
Pages Creck-Low Tide 11/16/2001 41.5 A unfiltered
Futch Creek-High Tide 11/16/2001 423 A unfiltered
Futch Creek-Low Tide 11/16/2001 21.2 A unfiltered
Pages Creek-High Tide 11/18/2001 41.6 A unfiltered
Pages Creek-Low Tide 11/18/2001 42.2 A unfiltered
Futch Creek-High Tide 11/18/2001 320 A unfiltered
Futch Creek-Low Tide 11/18/2001 88.4 A unfiltered
Pages Creek-High Tide 4/13/2002 40.0 A 5 then 1
Pages Creek-Low Tide 4/13/2002 40.0 A 5 then 1
Futch Creek-High Tide 4/13/2002 40.0 A 5 then 1
Futch Creek-Low Tide 4/13/2002 41.0 A Sthen1
Futch Creek-High Tide 4/14/2002 40.0 A 5.
Futch Creek-Low Tide 4/14/2002 40.0 A 5 then 1
Pages Creek-High Tide 4/16/2002 40.0 A 5 then 1
Pages Creek-Low Tide 4/16/2002 40.0 A 5 then 1
Time series
Pages Creek 11/13/2001 123.9 B unfiltered
Pages Creek 11/13/2001 126.8 B unfiltered
Pages Creek 11/13/2001 125.0 B unfiltered
Pages Creek 11/13/2001 130.5 B unfiltered
Pages Creek 11/13/2001 1459 B unfiltered
Pages Creek 11/13/2001 114.7 B unfiltered
Pages Creek 11/13/2001 139.6 B unfiltered
Pages Creek 11/13/2001 142.1 B unfiltered
Pages Creek 11/13/2001 100.8 B unfiltered
Pages Creek 11/13/2001 145.0 B unfiltered
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Table IV-1 (con't)

Inlets

Middle Sound, Low Tide

Mouth of Rich Inlet at high tide
Mouth of Rich Inlet at low tide
Mouth of Mason Inlet at high tide
Mouth of Mason Inlet at low tide
Mouth of Rich Inlet at high tide
Mouth of Rich Inlet at low tide

Pages Creek
Pages Creek
Pages Creek
Pages Creek

Pages Creek
Pages Creek
Pages Creek
Pages Creek
Pages Creek
Pages Creek
Pages Creek
Pages Creek
Pages Creek
Pages Creek
Pages Creek
Pages Creek

Futch Creek
Futch Creek
Futch Creek
Futch Creek
Futch Creek
Futch Creek
Futch Creek
Futch Creek
Futch Creek
Futch Creek
Futch Creek
Futch Creek

Rich Inlet @ ICW HT
Rich Inlet @ ICW LT
Mason Inlet @ ICW HT
Mason Inlet @ ICW LT

11/13/2001
11/13/2001
11/13/2001
11/13/2001

4/14/2002
4/14/2002
4/14/2002
4/14/2002
4/14/2002
4/14/2002
4/14/2002
4/14/2002
4/14/2002
4/14/2002
4/14/2002
4/14/2002

4/16/2002
4/16/2002
4/16/2002
4/16/2002
4/16/2002
4/16/2002
4/16/2002
4/16/2002
4/16/2002
4/16/2002
4/16/2002
4/16/2002

11/17/2001
4/15/2002
4/15/2002
4/15/2002
4/15/2002
4/17/2002
4/17/2002
4/17/2002
4/17/2002
4/17/2002
4/17/2002

100.7
136.9
914
87.7

110.2
113.6
112.8
113.6
116.8
140.2
118.7
119.3
113.9
114.1
114.1
114.7

113.6
112.8
114.0
110.9
113.6
113.7
113.6
113.6
117.7
113.6
113.6

822

215
40.0
40.0
40.0
40.0
40.0
40.0
40.0
40.0
40.0
40.0
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Table IV-1 (con't)

Spring/Stream/Groundwater

Pages Creek Stream-FurtadoRd ~ 4/20/2001
Pages Creek stream at Furtado Rc  4/13/2002
Pages Creck Stream-Porters Neck 4/20/2001
Pages Creek Stream: Bayshore R 4/23/2001
Pages Creek Stream: Bayshore R 11/15/2001
Pages Creek Stream: Bayshore R 4/11/2002
FC stream: Scotts Hill LoopRd  4/23/2001
FC stream: - Scotts Hill Loop Rd  11/15/2001
FC stream: Scotts Hill LoopRd  4/15/2002

Sidebury Rd Stream 4/20/2001
Futch Creek Spring 4/20/2001
Futch Creek Spring 4/22/2001
Futch Creek Spring 4/22/2001

Futch Creek spring at Saltwood L 4/23/2001

Futch Creek spring at Saltwood L 11/16/2001
Futch Creek spring at Saltwood L 4/18/2002
Bayshore Spring 11/15/2001
Bayshore spring - Pages Creek 4/11/2002

NENHC D1 (Peedee) 4/12/2002
NENHC S1 (Castle Hayne) 4/12/2002
NENHC D2 (Peedee) 4/12/2002 .
NENHC S2 (Castle Hayne) 4/12/2002
NENHC D3 (Peedee) 4/12/2002
NENHC S3 (Castle Hayne) 4/12/2002

25.0
170.5
25.0
25.0
137.8
40.9
25.0
102.0
136.3
25.0

25.0
25.0
25.0
25.0
125.1
167.3
137.5
36.4

100.0
100.0
100.0
100.0
100.0
100.0
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Table IV-4: Pages and Futch Creck estuary time series: radium, radon, and salinity

Sampling Sampling Salinity  Water 24Ra Ra 2%Ra %pa 22pn

Date Time ppt  depth (m)* dpm/160 L dpm/100 L dpm/100L dpm/100L.  dpm/L
Pages Creek time series
11/13/01 5:25 36.414 ** 244 54 18.0 243 0.7
11/13/01 7:23 36.404 1.693 184 58 215 25.8 *k
11/13/01 8:24 36.415 1.476 13.8 52 21.7 34.6 Hok
11/13/01 9:28 36.399 1.245 21.6 4.6 18.4 25.3 6.6
11/13/01 10:18 36.382 0.981 253 5.0 20.5 337 il
11/13/01 11:20 36.300 0.691 36.5 53 22.5 34.6 79
11/13/01 11:27 36.460 0.651 29.0 4.1 18.5 23.8 ok
11/13/01 12:03 36.360 0477 29.0 42 20.5 34.0 *k
11/13/01 12:42 36.128 0.351 27.6 75 21.8 314 Aok
11/13/01 13:25 36.069 0.267 20.6 6.0 21.9 32.6 12.0
11/13/01 14:25 36.368 0433 26.9 5.1 20.1 33.1 ok
11/13/01 15:20 36.465 0.703 23.6 43 20.2 30.1 il
11/13/01 16:21 36.406 1.009 18.9 38 159 22.6 il
11/13/01 17:20 36.424 1.256 19.3 42 18.6 279 *
11/13/01 18:22 36.415 1.471 376 7.9 19.6 335 **
11/13/01 19:20 36.403 1.532 394 6.8 20.1 31.0 **
Pages Creek time series
4/14/02 8:42 36.136 1.846 242 44 12.1 18.2 **
4/14/02 9:50 36.160 2.018 21.0 44 12.9 16.1 **
4/14/02 10:57 36.140 2.029 184 3.0 144 144 ok
4/14/02 11:57 36.105 1.846 21.9 5.0 144 18.7 ok
4/14/02 12:57 35.939 1.609 26.7 58 15.6 29.6 *k
4/14/02 13:57 35.811 1.357 28.8 7.5 16.1 224 ok
4/14/02 14:37 35.597 1.138 332 74 155 218 ok
4/14/02 15:57 35.167 0.960 345 88 154 23.1 *k
4/14/02 16:32 35.220 0.990 353 6.4 19.0 28.6 **
4/14/02 17:40 35.734 1.235 26.9 3.8 16.7 24.0 il
4/14/02 18:36 35.999 1.469 35.5 6.8 13.9 17.6 *k
4/14/02 19:39 36.082 1.714 273 53 11.0 16.9 Aok
Futch Creek time series . , .
4/16/02 9:07 35915 0.824 213 57 17.0 22.8 ok
4/16/02 10:00 35.991 0.940 35.8 7.8 16.1 21.4 *k
4/16/02 11:10 35.907 1.022 30.6 45 11.7 14.8 43
4/16/02 12:10 35.937 0.946 27.1 44 16.1 19.0 40
4/16/02 13:13 35.837 0.778 442 2.9 154 19.3 48
4/16/02 14:00 35.513 0.607 355 82 14.8 214 11.9
4/16/02 15:16 34.408 0.353 29.2 6.6 17.0 239 19.2
4/16/02 16:13 33.202 0.151 23.2 75 18.6 27.5 339
4/16/02 17:18 30.843 0.098 349 14.0 20.3 30.9 48.0
4/16/02 18:17 32.055 0.256 21.7 15 19.0 26.2 52.1
4/16/02 19:00 35.527 0.440 353 53 153 204 #k
4/16/02 20:00 35.898 0.687 404 89 15.6 20.0 7.3
*determined by YSI
**no data
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Table IV-11: Pages Creek estuary high tide and low tide radium isotope ratios

Pages Creek
Pages Creek-High Tide
Pages Creek-High Tide

Average 4/01 PC HT

Pages Creek-Low Tide
Pages Creek-Low Tide
Average 4/01 PC LT

Pages Creek-High Tide
Pages Creck-High Tide
Pages Creek-High Tide
Pages Creek-High Tide
Pages Creek-High Tide
Average 11/01 PC HT

Pages Creek-Low Tide
Pages Creek-Low Tide
Pages Creek-Low Tide
Pages Creek-Low Tide
Pages Creek-Low Tide
Average 11/01 PCLT

Pages Creek-High Tide

Pages Creek-High Tide

Pages Creek-High Tide
Average 4/02 PC HT

Pages Creek-Low Tide

Pages Creek-Low Tide

Pages Creek-Low Tide
Average 4/02 PCLT

4/21/01
4/22/01

4/21/01
4/22/01

11/12/01
11/13/01
11/15/01
11/16/01
11/18/01

11/12/01
11/13/01
11/15/01
11/16/01
11/18/01

4/13/02
4/14/02
4/16/02

4/13/02
4/14/02
4/16/02

Salinity
ppt

34.728
34.778
34.753

33.238
33.870
33.554

36.262
36.414
36.428
36.406
36.424
36.387

36.106
36.128
36.333
36.328
36.285
36.236

36.147
36.160
36.153
36.153

35.124
35.167
35.327
35.206

228R a/226R a

1.54
1.78
1.66

1.55
1.47
1.51

154
1.35
1.42
1.62
1.33
1.45

1.56
154

1.25
1.54
1.48

1.25
0.81
1.03

1.35
1.50
1.51
1.45
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2Ra/*Ra

0.99
1.14
1.07

2.08
1.58
1.83

1.07
1.00

1.18
1.13
1.10

1.16
1.05

0.54
0.82
0.90

1.31
2.36
1.83

1.88
1.49
2.09
1.82

223R a/226R a

0.30
0.49
0.39

0.69
0.61
0.65

0.31
0.30

0.27
0.34
0.30

0.35
0.24

0.20
0.24
0.25

0.34
0.33
0.33

0.55
0.58
0.71
0.61

2Ral*Ra

0.19
0.24
0.22

0.21
0.26
0.24

0.19
0.22
0.23
0.14
0.22
0.20

0.19
0.15

0.29
0.19
0.20

0.16
0.21
0.17
0.19

0.22
0.26
0.23
0.23



Table IV-12: Futch Creek estuary high tide and low tide radium isotope ratios

Salinity *Ra/*Ra Ra/*Ra RaRa PRa/*Ra

ppt

Futch Creek-High Tide ~ 4/21/01  35.587 1.01 1.95 0.31 0.16
Futch Creek-High Tide ~ 4/22/01  35.429 1.65 0.97 0.31 0.20
Average 4/01 FC HT 35.508 1.33 1.46 0.31 0.18
Futch Creek-Low Tide ~ 4/21/01  23.693 1.24 1.40 0.41 0.23
Futch Creek-Low Tide ~ 4/22/01 26936 141 1.53 035 0.16
Average 4/01 FC LT 25.314 133 147 0.38 0.20
Futch Creek-High Tide  11/12/01 36.348 1.81 0.51 0.19 0.20
Futch Creek-High Tide  11/13/01 36.427 122 0.46 0.16 0.29
Futch Creek-High Tide  11/15/01 36.434 124 0.66 0.14 0.17
Futch Creek-High Tide ~ 11/16/01 35.427 138 082 0.17 0.15
Futch Creek-High Tide ~ 11/18/01 36.481 131 0.51 023 035
Average 11/01 FC HT 36.223 1.39 0.59 0.18 0.23
Futch Creek-Low Tide ~ 11/12/01 33.783 143 1.36 0.36 0.19
Futch Creek-Low Tide ~ 11/13/01 34.392 1.26 131 0.29 0.18
Futch Creek-Low Tide  11/15/01 34.964 1.18 1.36 0.18 0.11
Futch Creek-Low Tide ~ 11/16/01 34.908 1.26 1.31 0.35 0.21
Futch Creek-Low Tide ~ 11/18/01 34.560 1.36 1.10 0.30 0.20
Average 11/01 FC LT 34.521 1.30 1.29 0.30 0.18
Futch Creek-High Tide ~ 4/13/02 35911 1.38 1.65 0.49 0.21
Futch Creek-High Tide ~ 4/14/02 35917 1.50 1.32 0.34 0.17
Futch Creek-High Tide ~ 4/16/02  35.991 1.26 2.07 0.39 0.15
Average 4/02 FCHT - 35939 - 138 1.68 0.41 0.18
Futch Creek-Low Tide ~ 4/13/02  32.446 0.20
Futch Creek-Low Tide ~ 4/14/02 32934 159 - 153 0.44 0.18
Futch Creek-Low Tide ~ 4/16/02  30.843 1.52 1.13 0.69 0.40
Average 4/02 FCLT 32.074 1.56 133 0.57 0.29
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Table IV-13: Pages and Futch Creek estuary time series: radium isotope ratios
2RafRa  ®RafPRa  Ra/Ra

Sampling  Salinity

Sampling

Date Time

~ Pages Creek time series
11/13/01 5:25
11/13/01 7:23
11/13/01 8:24
11/13/01 9:28
11/13/01 10:18
11/13/01 11:20
11/13/01 11:27
11/13/01 12:03
11/13/01 12:42
11/13/01 13:25
11/13/01 14:25
11/13/01 15:20
11/13/01 16:21
11/13/01 17:20
11/13/01 18:22
11/13/01 19:20

Pages Creek time series
4/14/02 8:42
4/14/02 9:50
4/14/02 10:57
4/14/02 11:57
4/14/02 12:57
4/14/02 13:57
4/14/02 14:37
4/14/02 15:57
4/14/02 16:32
4/14/02 17:40
4/14/02 18:36
4/14/02 19:39

Futch Creek time series
4/16/02 9:07
4/16/02 10:00
4/16/02 11:10
4/16/02 12:10
4/16/02 13:13
4/16/02 14:00
4/16/02 15:16
4/16/02 16:13
4/16/02 17:18
4/16/02 18:17
4/16/02 19:00
4/16/02 20:00

(ppt)

36.414
36.404
36.415
36.399
36.382
36.300
36.460
36.360
36.128
36.069
36.368
36.465
36.406
36.424
36.415
36.403

36.136
36.160
36.140
36.105
35.939
35.811
35.597
35.167
35.220
35.734

35.999

36.082

35915
35.991
35.907
35.937
35.837
35.513
34.408
33.202
30.843
32.055
35.527
35.898

1.35
1.20
1.60
1.37
1.65
1.54
1.29
1.66
1.44
1.49
1.65
1.49
1.42
1.51
1.71
1.54

1.51
1.25
1.00
1.30
1.90
1.39
1.41
1.50
1.50
1.44

1.27-

1.54

1.34
1.33
1.26
1.18
1.25
1.45
1.41
1.48
1.52
1.38
1.33
1.28
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1.00
0.71
0.40
0.85
0.75
1.05
1.22
0.85
0.88
0.63
0.81
0.78
0.84
0.69
1.12
1.27

1.33
1.31
127
1.17
0.90
1.29
1.52
1.49
1.23
1.12
2.02
1.62

094
1.67
2.07
143
228
1.66
1.22
0.84
1.13
0.83
1.73
2.02

0.30
0.27
0.24
0.25
0.25
0.24
0.22
0.20
0.34
0.28
0.25
0.21
0.24
0.22
0.40
0.34

0.36
0.34
0.21
0.35
0.37
0.47
0.48
0.58
0.34
0.23
0.49
0.48

0.34
0.48
0.39
0.27
0.64
0.56
0.39
0.41
0.69
0.39
0.34
0.57

BRal*Ra

0.22
0.31
0.38
0.21
0.20
0.15
0.14
0.14
0.27
0.29
0.19
0.18
0.20
022
0.21
0.17

0.18
0.21
0.16
0.23
0.22
0.26
0.22
0.26
0.18
0.14
0.19
0.19

0.27
022
0.15
0.16
022
023
023
033
0.40
035
0.15
022
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Figure IV-1

Uranuim-Thorium decay series.
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Figure IV-2

Map of Cape Fear region of North Carolina, with detail of Pages Creek, Futch Creek,
Rich Inlet, and Mason Inlet sample locations.
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Figure IV-2
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Figure IV-3
Comparison of Durridge-counted and Lucas cell-counted *’Rn (in dpm L") from

November 2001. Radon samples collected simultaneously and measured using both
analysis techniques correlate well, and are generally within error.
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Figure IV-4

Pages Creek estuary Ag)ril 2001, November 2001, and April 2002 high and low tide a)
salinity. b) 2%Ra. c) **Ra. The left circle in each box represents the high tide value (HT)
and the right circle the low tide value (LT). Salinity decreased at Pages Creek from high
to low tide on all sampling days, with the largest change in salinity in April 2001 and the
smallest in November 2001. ***Ra and *Ra both increased from high tide to low tide
during most sampling days in April 2001 and April 2002, but showed no consistent high
tide/low tide change during November 2001.
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Figure IV-5

Pages Creek estuary Agril 2001, November 2001, and April 2002 high and low tide a)
salinity. b) 226Ra. c) **®Ra. Within each box, the left circle regresents the high tide value
(HT) and the right circle the low tide value (LT). 226Ra and ?**Ra increased from high
tide to low tide during most sampling days in April 2001 and April 2002, but showed no
consistent high tide/low tide change in November 2001.
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Figure IV-6

Pages Creek estuary November 2001 and April 2002 high and low tide a) salinity. b)
22Rn. Within each box, the left circle represents the high tide value (HT) and the right
circle the low tide value (LT). **’Rn increased during most sampling days in November
2001 and April 2002 (no ?22Rn samples were collected in April 2001).
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Figure IV-7

Futch Creek estuary A};I‘il 2001, November 2001, and April 2002 high and low tide a)
salinity. b) 224Ra. ¢) **Ra. Within each box, the left circle represents the high tide value
(HT) and the right circle the low tide value (LT). Salinity decreased from high to low
tide during all sampling days, with the largest change in salinity occurring in April 2001,
and the smallest in November 2001. ?**Ra and **’Ra increased from high tide to low tide
on all sampling days. Note that the scale for each isotope is identical to the scale in
Figure IV-4 (Pages Creek 22'Ra and *Ra).
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Figure IV-8

Futch Creek estuary A;ngil 2001, November 2001, and April 2002 high and low tide a)
salinity. b) **°Ra. c) *®Ra. Within each box, the left circle represents the high tide value
(HT) and the right circle the low tide value (LT). 2R a increased from high tide to low
tide on all sampling days, and 228Ra on most sampling days. Note that the scale for each
isotope is identical to the scale in Figure IV-5 (Pages Creek ?25Ra and *®Ra).
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Figure IV-9

Futch Creek estuary April 2001, November 2001, and April 2002 high and low tide a)
salinity. b) 222Rn. Within each box, the left circle represents the high tide value (HT) and
the right circle the low tide value (LT). 222Rn increased from high tide to low tide on all
sampling days. Note that the scale for each isotope is identical to the scale in Figure IV-6
(Pages Creek **?Rn); the high tide to low tide change in *’Rn was much greater in the
Futch Creek estuary than in the Pages Creek estuary during most sampling days.
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Figure IV-10

Time series 2**Ra and salinity data for a) November 2001 in Pages Creek. b) April 2002
in Pages Creek. c) April 2002 in Futch Creek. Solid lines represent the salinity values
throughout the tidal cycle. Error for each radium measurement is 10%. The Pages Creek
November 2001 time series 2**Ra and the Futch Creek April 2002 time series ?2Ra
activities are not closely related to the tidal cycle. However, the Pages Creek April 2002
time series 2*Ra activities show a minimum at high tide and a maximum at low tide.
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Figure IV-11

Time series **’Ra and salinity data for a) November 2001 in Pages Creek. b) April 2002
in Pages Creek. c) April 2002 in Futch Creek. Solid lines represent the salinity values
throughout the tidal cycle. Error for each radium measurement is 10%. The Pages Creek
November 2001 time series *?Ra shows a maximum at low tide, but little range
throughout the rest of the tidal cycle. The Pages Creek April 2002 time series *’Ra
activities appear to be related to the tidal cycle, with a minimum at high tide and a
maximum at low tide. The Futch Creek April 2002 time series ’Ra activities show a
maximum at low tide, but no pattern at other times in the tidal cycle.
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Figure IV-12

Time series **°Ra and salinity data for a) November 2001 in Pages Creek. b) April 2002
in Pages Creek. c) April 2002 in Futch Creek. Solid lines represent the salinity values
throughout the tidal cycle. Error for each radium measurement is 10%. The Pages Creek
November 2001 time series >°Ra shows no clear pattern throughout the tidal cycle.
However, both the Pages Creek and Futch Creek April 2002 time series 226R a activities
have maxima at low tide and minima at high tide.

210



211

a. Pages Creek estuary time series: ¢ 226Ra
November 13, 2001 —— Salinity
25 36.5
~ 1 364
= wn
S 201 E
E + 3638,
£ <
S 15 + 36.2%
g &
S + 36.1
LT
10 [ 1 T 1} | T ¥ 36-0
4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00
b. Pages Creek time series; & 226Ra
April 14,2002 Salinity
22 36.4
HT
3 20 - & + 36.2
[~ 4
= 18 - 36.0 m
E| 1358 %
2 16 - g
et + 356 =
_ ]
£ 14 { { 13542
12 1 { 1352
LT
10 + ) ] 1 ] —_—r 35-0
8:00 10:00 12:00 14.00 16:00 18:00 20:00 22:00
C. Futch Creek time series: & 226Ra
April 16, 2002 Salinity
24 T 37
n] Tk 1 36
= 20 135,
S 18 34 E
] -1 4
inl | :
< 161 { { { 1Bg
£ 14 +32°
Y 12 } 131
LT
10 T T y T T T 30
8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

Figure IV-12




Figure IV-13

Time series “*Ra and salinity data for a) November 2001 in Pages Creek. b) April 2002
in Pages Creek. c) April 2002 in Futch Creek. Solid lines represent the salinity values
throughout the tidal cycle. Error for each radium measurement is 10%. The Pages Creek
November 2001 and April 2002 time series 2*Ra show no clear relationship to the tidal
cycle. However, the Futch Creek April 2002 time series 28R a activities show a
maximum at low tide, and a minimum at high tide.

212




a.

m/100L)

=

d

(]

228R

%Ra (dpm/100L)

28Ra (dpm/100L)

Pages Creek estuary time series: ¢ 228Ra
November 13, 2001 —— Salinity
40 36.5
35 1 + 36.4
w
30 X
1 363 E
25 4 ﬁ
+ 36232
20 3
15 - 4 36.1
LT
10 1 1) ¥ T i 1] L 36-0
4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00
Pages Creek time series; ¢ 228Ra
April 14, 2002 Salinity
40 364
35 - + 362
30 - + 36.0 g
1 358 E
25 - <
20 | + 356 g
+ 354 2
15 {352
10 T 1 i 1 T T 35-0
8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00
Futch Creek time series: ¢ 228Ra
April 16, 2002 Salinity
40 37
HT
35 - 4 T 36
30 ] } T 35 w
+ 34 E'
25 A { } <
{ I +3g
. 2
20 i1 L S -
15 1 ¢ 13
LT
].0 ] T v ¥ T 1 30
8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00
Figure IV-13

213




Figure I1V-14

Time series **’Rn and salinity data for a) November 2001 in Pages Creek. b) April 2002
in Futch Creek. The solid lines represent the salinity throughout the tidal cycle. Both
gime series show a strong inverse correlation between the tidal cycle (and salinity) and
22
Rn.
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Figure IV-15

Rich and Mason Inlet November 2001 low tide and April 2002 high and low tide a)
salinity values, b) 2%Ra activities, and c) 223Ra activities. No high tide sample was
collected from Rich Inlet in November 2001. Within each box, the left circle represents
the high tide value (HT) and the right circle the low tide value (LT). 224Ra and “*Ra
increased from high tide to low tide during all sampling days.
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Figure IV-16

Rich and Mason Inlet November 2001 low tide and April 2002 high and low tide a)
salinity values, b) 226R a activities, and c) 228Ra activities. Within each box, the left circle
represents the high tide value (HT) and the right circle the low tide value (LT).
November 2001 LT **Ra and #?®Ra activities were 2-3 times as high as the April 2002
LT activities. 2?Ra and **®Ra increased from high tide to low tide on 4/17/02, but
decreased from high tide to low tide on 4/15/02. However, all high tide/low tide
differences were small, within a 10% error for both 226Ra and **Ra.
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Figure IV-17

November 2001 and April 2002 Rich and Mason Inlet high tide (filled symbols) and low
tide (open symbols) radium isotopes and salinity. The November 2001 low tide sample
had the highest salinity of all inlet samples, and the highest 226Ra and **®Ra activities.
The **’Ra and ***Ra activities were within the range of the April 2002 low tide activities.
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Figure IV-18

Sgring, stream, and groundwater ***Ra and 226Ra activities. The average spring

28R a/*?%Ra activity ratio (AR) is 0.3:1, while the average stream activity ratio is 0.6:1.
The average Castle Hayne groundwater activity ratio is 0.2:1. The low 28Ra/***Ra
activity ratio indicates interaction limestone; groundwater from a limestone aquifer can
become enriched in the 22®U- and *°U-series daughters “Ra and **’Ra relative to the
22Th-series daughters 2**Ra and **Ra.
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Figure IV-19

Castle Hayne groundwater **Ra and **°Ra activities (with spring and stream activities).
. Castle Hayne groundwater 228R a/*?®Ra is low, with the average Castle Hayne
groundwater activity ratio at 0.2:1.
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Figure 1V-20

222Rn time series data from a) November 2001 Pages Creek. b) April 2002 Futch Creek.
Both **’Rn time series show a close inverse correlation with salinity.
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Figure IV-21

222Rn time series data plotted with a) spring 222Rn activities and b) Castle Hayne
groundwater 222Rn activities. A regression through the time series data to the zero-
salinity point plots within the range of Futch and Pages springs, suggesting that spring
inputs can account for all of the observed excess 222Rn in Futch Creek in April 2002.
Castle Hayne groundwater *’Rn is much higher than spring ?22Rn; much of the **’Rn in
the groundwater may be lost to the atmosphere during discharge.
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Figure IV-22
Pages Creek time series salinity and water depth data for a) one tidal cycle in November

2001. b) multiple tidal cycles in April 2002. Salinity data show a small peak ~ two hours
prior to full low tide.
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Figure IV-23

The high tide/low tide change in a) 226Ra b) **Ra normalized to the high/low tide change
in salinity (ASal) at Futch Creek. Bars represent A?*Ra /ASal and A**®Ra /ASal for each
sampling day in April 2001, November 2001 and April 2002. Lines represent the tide
range between high and low tide for Futch creek (secondary y-axis). In Futch Creek, the
highest change in **°Ra relative to salinity change occurred during the full spring tide on
November 16, 2001.
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Figure 1V-24

Surficial aquifer and Castle Hayne aquifer well head data for Topsail Beach well from
January 2000 through November 2002. The well is located ~ 10 km north of Pages and
Futch Creeks. Well head data is relative to meters above mean sea level. The lowest
well heads in both the surficial and the Castle Hayne-screened wells occurred in
November 2001, during a months-long drought.
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Figure IV-25

The high/low tide change in: a) *°Ra, b) 28R a, normalized to the high tide/low tide
change in salinity (ASal) at Pages Creek. Bars represent A?*°Ra /ASal and A”®Ra /ASal
for each sampling day in April 2001, November 2001 and April 2002. Lines represent
the tide range between high and low tide for Pages creek (secondary y-axis). The largest
change in ***Ra relative to salinity occurred on the day of the full spring tide (Novmeber
16, 2001). However, the largest change in 228Ra relative to salinity occurred on the next
sampling day after the full spring tide, November 18, 2001.
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Figure IV-26

The high/low tide change in a) 22%Ra b) ?*Ra normalized to the high/low tide change in
salinity (ASal) at Futch Creek. Bars represent A**Ra /ASal and A?*Ra /ASal for each
sampling day in April 2001, November 2001 and April 2002. Lines represent the tide
range between high and low tide for Futch creek (secondary y-axis). For both 2Raand
224Ra, the largest change relative to salinity occurs on the day of the full spring tide
(11/16/01).
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Figure IV-27

The high/low tide change in: a) 223Ra, b) *Ra, normalized to the high tide/low tide
change in salinity (ASal) at Pages Creek. Bars represent A?**Ra /ASal and A**Ra /ASal
for each sampling day in April 2001, November 2001 and April 2002. Lines represent
the tide range between high and low tide for Pages creek (secondary y-axis). Both 22%Ra
and *’Ra decreased from high tide to low tide on the full spring tide (11/16/01), so that
A*Ra /ASal and A**’Ra /ASal are reversed.
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Figure 1V-28

*28Raf**Ra activity ratios for wells, springs, streams, estuaries, and inlets. Groundwater
and springs have the lowest **Ra/***Ra activity ratios (0.2 — 0.8), while stream
??®Ra/**Ra AR (0.5 — 1.4) are higher. Estuary and inlet 2*Ra/**Ra ranges from 1-2,
with low tide samples (averaging around 1.4) showing less variability than high tide
samples.
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Figure IV-28
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Figure IV-29

Pages Creek estuary April 2001, November 2001, and April 2002 high and low tide a)
salinity. b) 228Ra/***Ra. Within each box, the left circle regresents the high tide value
(HT) and the right circle the low tide value (LT). 28R a/**Ra activity ratios showed no
clear pattern from high tide to low tide in April 2001 or November 2001, but appeared to
generally increase from high tide to low tide in April 2002.
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Figure IV-30

Pages Creek 228p a/**Ra high/low tide pair data, plotted against salinity. High tide
228Ra/**Ra AR were much more variable than low tide 22Ra/*®Ra AR.
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Figure IV-31

Futch Creek estuary April 2001, November 2001, and April 2002 high and low tide a)
salinity. b) 228Ra/***Ra. Within each box, the left circle represents the high tide value
(HT) and the right circle the low tide value (LT). 228Ra/*Ra activity ratios showed no
clear pattern from high tide to low tide during any sampling period, although they appear
to generally increase from high tide to low tide in April 2002.
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Figure IV-32

Futch Creek 2*®Ra/*Ra high/low tide pair data, plotted against salinity. As for Pages
Creek, the low tide 228Ra/**Ra AR are less variable than the high tide 228Ral**Ra AR.
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Figure IV-33

Pages Creek estuargl April 2001, November 2001, and April 2002 high and low tide a)
salinity. b) ?*Ra/**®Ra. Within each box, the left circle regresents the high tide value
(HT) and the right circle the low tide value (LT). 224Ra/**Ra AR increased from high
tide to low tide during April 2001, but in November 2001 and April 2002 showed no
clear pattern from high tide to low tide.
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Figure 1V-34

Pages Creek 224R a/**®Ra high/low tide pair data, plotted against salinitgl. Agril 2001 and
April 2002 low tide **Ra/**®Ra AR were less variable than high tide **Ra/***Ra.
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Figure IV-35

Futch Creek estuary April 2001, November 2001, and April 2002 high and low tide a)
salinity. b) 2%Ra/*®Ra. Within each box, the left circle regresents the high tide value
(HT) and the right circle the low tide value (LT). 224R a/**®Ra increased from hi gh to low
tide during all times in November 2001, but showed no clear pattern in April 2001 or
April 2002.
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Figure I'V-36

Futch Creek ***Ra/*®Ra hi gh/low tide pair data, plotted against salinity. The low tide
?2'Ra/**Ra AR were much less variable than high tide *Ra/**Ra.
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Figure IV-37

Pages Creek estuary April 2001, November 2001, and April 2002 high and low tide a)
salinity. b) 2°Ra/***Ra. Within each box, the left circle reé)resents the high tide value
(HT) and the right circle the low tide value (LT). **Ra/**°Ra increased from high tide to
low tide during April 2001 and April 2002, but generally decreased from high tide to low
tide in November 2001.
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Figure IV-38

Futch Creek estuary April 2001, November 2001, and April 2002 high and low tide a)
salinity. b) 22Ra/*Ra. Within each box, the left circle regresents the high tide value
(HT) and the right circle the low tide value (I.T). 2R a/*®Ra increased from high tide to
low tide during all sampling days.
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Figure IV-39

Pages Creek estuary April 2001, November 2001, and April 2002 high and low tide a)
salinity. b) 225Ra/”*Ra. Within each box, the left circle represents the high tide value

(HT) and the right circle the low tide value (LT). **Ra/***Ra showed no pattern from
high tide to low tide in November 2001, but increased in April 2001 and April 2002.
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Figure 1V-40

Futch Creek estuary April 2001, November 2001, and April 2002 high and low tide a)
salinity. b) 225Ra/***Ra. Within each box, the left circle reyresents the high tide value
(HT) and the right circle the low tide value (LT). 2R a/***Ra showed no high tide/low
tide pattern during any sampling period.
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Chapter V. MULTI-TRA CER MEASUREMENTS OF GROUNDWATER DISCHARGE TO
COASTAL WATERS '

Abstract

Concurrent estimates of submarine groundwater discharge (SGD) were derived
from fluxes of the geochemical tracers radium, radon, and AMC from two small estuaries
in southeastern North Carolina. While A!*C is a tracer of the fresh, artesian component
of the total SGD, fluxes of radium and radon are likely to include both terrestrially-driven
and tidally-driven components of the total SGD. ~

Fluxes of each of these tracers to these estuaries were measured during April
2001, November 2001, and April 2002. For each tracer, a hypothetical, “inferred” spring
flux was calculated, by assuming that all of the tracer flux was spring-derived (though in
fact the springs are not expected to be a primary source of 22%Ra, ?*Ra, and ***Ra, and
may only partially support excess 222Rn and Ra).

In both estuaries, spring discharge estimates derived from fluxes of 228Ra, 223Ra,
and ***Ra were at least an order of magnitude higher than discharge estimates derived
from AC, ?Rn, and **°Ra, suggesting that springs were not a primary source for 22%Ra,
2R a, and 2*Ra to either estuary. In the Pages Creek estuary, spring discharge estimates
derived from fluxes of *Ra were at least two times higher on all sampling days than
spring fluxes derived from ***Rn or AM™C. In the Futch Creek estuary, flux estimates
derived from ?*Ra were only ~10% of the A'*C-estimated spring fluxes in April 2001 (no
estimates were made with 22’Rn during this time), but during the other sampling times,
2%Ra-, ?Rn-, and AMC-estimates of spring discharge compared well, and were generally
within error. This suggests that additional sources contributed to the observed excess
222Rn and ?*Ra during November 2001 in the Pages Creek estuary, and to the excess
226Ra during April 2001 in the Pages Creek estuary. In the case of 22°Ra, an additional
source may be advection from the surficial groundwater, while for #22Rn it may be
regeneration within estuarine sediments.

1. Introduction

“Submarine groundwater discharge” (SGD) can refer to subsurface water of any
salinity or chemical composition that discharges into estuaries or the coastal ocean
(Moore 1999; Burnett et al 2002). SGD is an important mechanism for the transport of
nutrients and other dissolved chemical species to coastal waters, yet direct fluxes of
groundWater are both temporally and spatially variable, and therefore difficult to

quantify. Consequently, many different field methodologies have been used in recent
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years to determine SGD, including direct physical measurements made with seepage
meters (Bokuniewicz 1992; Simmons 1992; Robinson et al 1998), modeling approaches
(based on, for example, hydrologic water budgets, pore water concentrations of chloride,
or numerfcal models) (Zektzer et al 1973; Choi and Harvey 2000) and approaches based
on geochemical tracers such as 22Rn (e.g. Cable et al 1996a, b; Corbett et al 1999, 2000),

the four radium isotopes (226Ra, 228Ra, 223Ra, and 224Ra) (e.g. Bollinger and Moore 1993;

Moore 1996; Rama and Moore 1996; Krest et al 2000), and A™*C (Gramling et al 2003).

Several recent studies of groundwater discharge at the land-sea interface have
focused on the comparison and evaluation of different methodologies (Swarzenski et al
2001; Burnett et al 2002; Cable et al 2003). These studies have found that flux estimates
based on radium and radon isotopes, as well as on seepage meters, were higher than
fluxes calculated from a chloride pore water advection model or from hydrological
models. One likely explanation for these differences is that such modeling estimates
have considered only onshore-offshore hydraulic gradients, rather than tidal pumping or
oscillatory wave motion, which drives seawater circulation through shallow sediments
(Burnett et al 2002). The fluxes measured by seepage meters and by radium and radon,
however, include both terrestrially-driven and tidally-driven components of the total

groundwater discharge at the coast.

Radium and radon are useful geochemical tracers of SGD because they are
enriched in groundwater, are relati\;ely easy to measure, and behave conservatively with
respect to biological processes (e.g. Bollin ger and Moore 1993; Rama and Moore 1996;
Cable et al 1996; Krest et al 2000; Corbett et al 1999, 2000). The range of half-lives of
the four radium isotopes 226Ra (ty, = 1600 yr), 28Ra (tyn = 5.75 yr), 2BRa (tip=1144d),
and **Ra (t;, = 3.66 d) provides a means of quantifying fluxes and exchange rates
between surface waters and sediment layers over different time scales. Radium
desorption from aquifer or riverine particles is enhanced in waters of increasing ionic
strength, and the groundwater radium flux is almost certainly elevated as radium is
desorbed from aquifer sediments by salt water intrusion (e.g. Elsinger and Moore 1980;

Burnett et al 1990; Moore 1996). Therefore, fluxes of radium are likely to provide an
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estimate of the total subsurface flux, including the recirculation of seawater through
surface sediments, rather than of fresh, land-sea fluxes alone (e.g. Moore 1999; Burnett et
al 2002; Cable et al 2003).

Radon ( **Rn (t;,, = 3.8 days)) is not sensitive to salinity-linked desorption

reactions, but it is quickly lost to the atmosphere once groundwater is exposed at the land
‘surface. As a result, coastal >Rn activities may provide only a minimum estimate of the
total groundwater flux (Corbett et al 1999; Swarzenski et al 2001).

AYC can be used to trace SGD inputs from any source with a distinct radiocarbon
content. - In coastal North Carolina, fresh water artesian discharge is characterized by a
low A!*C signature acquired from the carbonate aquifer rock, and thus can be used to
estimate the artesian contribution to estuarine freshwater budgets (Gramling et al 2003).
After determining the total fresh water input to an estuary by a salinity mass balance, the
fresh water input can be partitioned between surface sources (including streams and the
surficial aquifer) and artesian groundwater using a carbon isotope mass balance based on

DIC concentrations and A*C values.

In this study, concurrent groundwater flux estimates were derived from fluxes of
the geochemical tracers radium, radon, and AMC from two small estuaries in southeastern
North Carolina. The objective of this work is to understand which of the components of
the total SGD (including artesian discharge from confined aquifers, seepage from the
estuarine bottom sediments, and tidal filling and draining of marsh sediments) is
measured by each of these tracers, and to compare these estimates to better understand
how the estuarine fluxes of water, salt, and the isotopic tracers are partitioned among

these components.

Confined groundwater discharge to these estuaries is a source for all of the tracers
— AMC, R, and radium. However, the AMC-derived fluxes represent only the artesian
component of the total SGD into each estuary, while the 222Rn and radium fluxes include
both artesian discharge and other components of the total flux (Figure 1). 2%Rais

supplied by both spring discharge and advection from the surficial aquifer. 22Ra and
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224 a (which are regenerated more rapidly than %R a in sediments) are supplied to the
estuaries by artesian discharge, but are primarily linked to regeneration and release within
the bottom and tidal marsh sediments (Figure 1). 228Ra can originate from all of these
components. 222Rn is supplied both by artesian discharge and by regeneration within

sediments.

The artesian discharge to the two estuaries, Pages Creek and Futch Creek, was
estimated by measuring fluxes of each of these tracers during three sampling periods in
April 2001, November 2001, and April 2002. To directly compare these fluxes, a
hypothetical, “inferred” spring flux was calculated for each tracer, by assuming that all of
the tracer flux was spring-derived (though in fact the springs are not expected to be a
primary source of 224Ra, Ra, and **Ra, and may only partially support excess *2Rn

and *Ra).

In both estuaries, spring discharge derived from fluxes of 228Ra, 223Ra, and **Ra
were at least an order of magnitude higher than discharge estimates derived from AYC,
222Rn, and **°Ra, suggesting that springs were not a primary source for 228Ra, *"Ra, and
224Ra to either estuary. In the Pages Creek estuary, spring discharge estimates derived

f 226Ra were at least two times higher on all sampling days than spring

from fluxes o
fluxes derived from 222Rn or A™C. In the Futch Creek estuary, flux estimates derived
from ***Ra were only ~10% of the A™C-estimated spring fluxes in April 2001, but during
the other sampling times, **°Ra-, *’Rn-, and AC-estimates of spring discharge

compared well, and were generally within error.

2. Methods
2.1 Study site

Chapters II and IV of this dissertation provide detailed study site information for

the Pages and Futch Creek estuaries (Figure 2). A description of the geologic and
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hydrogeologic characteristics of the Onslow Bay region of southeastern North Carolina is

presented in Chapter II.

A conceptual cross-section of the interaction between a coastal groundwater
system and an estuary in the Onslow Bay region is shown in Figure 3. Spring discharge
can occur both within the estuary and in the upper marsh as a result of a leaky or locally
absent confining unit over the Castle Hayne aquifer (1) (discussed in detail in Chapter II);
advection of groundwater in the surficial aquifer leads to seepage into streams or directly
into the estuary via bottom sediments (2); tidal filling of marsh sediment pore waters
during rising tide stage and subsequent draining of the sediments during falling tide (3);

and (4) mixing between the advected groundwater and tidal inundation of sediments.
2.2 Sample Collection and Analysis

2%Ra, 228Ra, 223Ra, 24pa, AMC, and salinity samples were collected from the
Pages Creek estuary and the Futch Creek estuary in April 2001, November 2001, and
April 2002. **?Rn was sampled in November 2001 and April 2002. Dissolved samples
were collected at the mouth of each estuary just before high tide and just before low tide,
as well as from fresh water spring and stream inputs into each estuary (Figure 2). DIC,
DIC isotopic, and salinity collection and analysis is described in detail in Chapter IIL

Radium and radon sample collection and analysis is described in detail in Chapter IV.
2.3 Calculations and flux estimates

In this study, we compare groundwater discharge estimates derived from fluxes of
the geochemical tracers 226Ra, 8Ra, *PRa, 2%Ra, *’Rn, and AMC from two estuaries.
The total flux of groundwater to these estuaries is expected to include both fresh and
brackish or saline components, and to derive from both artesian and surficial sources. As
described in Chapter IV, fluxes of these tracers are linked to different estuarine processes,
and it is expected that the various tracer-derived SGD estimates will be complementary,

describing different portion(s) of the total SGD at the coast (Figure 1).

The potential sources of radium and radon to either estuary include inflowing

water from the ICW, discharge from springs originating from the confined Castle Hayne
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aquifer, discharge from the surficial aquifer, regeneration and release from the estuarine
bottom sediments, and regeneration and release from tidal marsh sediments. Aside from
low tide outflow, the primary sink for 222Rn is gas evasion (although decay within the
water column is considered as a sink for ***Ra, 223Ra, and ?*’Rn, it is not expected to
significantly affect their budgets as the residence time of water within these estuaries is
one tidal cycle, short relative to the half-lives of each of these isotopes). For AYC, the

sources and sinks include tidal exchange with the ICW, streams, and springs.
2.3.1 Radium isotopic mass balances and flux calculations

Excess radium (Ra,,) is defined as the difference in radium activity between low
tide outflow and high tide inflow. Daily total radium fluxes for each isotope of radium
(in dpm m™ d) are calculated as

_ Ra_, *Tidal prism * Tides/day

1)
Estuary area

Tr

a

There are 1.9 tides per day, and the areas of both estuaries (in m?), as well as the

average tidal prisms (in m?) for each sampling period, are given in Table 1.
The general, steady-state mass balance calculation for the flux of excess radium
is:
JRra = Jspring + Jstream + Jsediments — AMARaZ 2

where Jg, (dpm m™ d) is determined by Equation (1). J spring (dpm m? d?) reflects
discharge from artesian sources directly into the estuary or salt marshes, averaged over
the entire area of the estuary. Jediments (dpm m2 d'l) includes seepage from the bottom
estuarine sediments as both discharge from the surficial aquifer and release of radium
produced within the sediments, likewise averaged over the area of the estuary. Fluxes of
radium as either spring discharge or surficial aquifer seepage may include both dissolved
and particulate radium fluxes. Jiyarsh (dpm m2 d?) includes regeneration and release of

radium from tidally inundated marsh sediments. AAg, (dpm m™ d’*) represents decay
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within the water column, and z (m) is the depth of the water column for each sampling

location.
2.3.1.1%*°Ra

The primary sources for 226Ra are artesian discharge and seepage from the
surficial aquifer (Figure 1). Due to the slow rate of 22%Ra regeneration from 20Th, Jparsh
is assumed to be equal to zero, as the sediments are expected to be deficient in desorbable
226Ra (Rama and Moore 1996). Additionally, AAg,z is assumed to be equal to zero, as no
decay is expected to occur within the water column due to the short residence time within
the estuary relative to the half-life of 22Ra. Taking Jg, from Equation (1), the mass

balance for 2?°Ra then becomes:

Jra=1J spring + Jstream + Jsediments (3)

where, for 226Ra, Jsediments rEpresents fluxes from the surficial aquifer alone (rather than

including sediment production).
2.3.1.2%%Ra
" For 228Ra, the mass balance is:
Tra = Jspring + Jstream + Jsediments @)

~ As discussed in Chapter IV, production of **®Ra within sediments may occur on the time
scales of this study (though this is likely to be small), and production is therefore
included as a source term in the mass balance equation. As for *°Ra, decay of **Ra
within the water column is negligible dﬁe to the short residence time. For 228Ra, Joediments
includes both advection from the surficial aquifer and regeneration and release of 2’Ra

within the sediments.
2.3.1.3?*Ra and ***Ra

A similar equation is used for 22%Ra and **Ra:

JRa = Jspring +1] stream + J sediments — }‘nARaZ (5)
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For both **Ra and 224Ra, regeneration within estuarine bottom sediments and
regeneration within tidal marsh sediments are likely to be significant source terms (Figure
1). Although water column residence time is still short relative to the half-lives of these

isotopes, decay within the water column is included in these equations as a possible sink.
2.3.2 >’ Rn mass balance and flux calculations

Daily fluxes of 222Rn from each estuary (in dpm m? d1) are calculated as the
excess of low tide ***Rn activities over hi gh tide 222Rn activities (222Rnex) times the
estuary tidal prism (in m?), the number of tides per day, and divided by the area of each

estuary (in m?):

?2Rn, *Tidal prism * Tides/day
Jpora = (6)
Estuary area

Potential sources of excess 22’Rn to both estuaries include discharge from fresh
water springs, input from fresh water streams, seepage from the surficial aquifer,
regeneration and release from estuarine bottom sediments and from tidally inundated
marsh sediments, and production within the water column from 226bRa. Sinks for 2’Rn
include gas evasion to the atmosphere and decay of 22Rn within the water column. The

mass balance can be expressed for each estuary as:
J220Rn = Jspn’ng + Jstream + Jscdiments T AARaZ — Jatm — AMARrnZ N

where Jpring (dpm m? d'l) is discharge from artesian sources directly into the estuary and
Jstream (dpm m’? d'l) is stream inputs. Jsediments (dpm m d'l) includes both advective and
diffusive fluxes of *?Rn from sediments (as shown in Figure 1, this includes inputs from
both the surficial aquifer and regenerated 222R1). Jam (dpm m d'') represents loss of
222Rn from the water column to the atmosphere. AAg, and AAg, (dpm m~ d?) represent
production and decay within the water column, respectively, and z (m) is the depth of the

water column for each sampling location.

Production and decay of ?Rn within the water column are calculated by the

activities of *?°Ra and *’Rn and the height of the water column at outflow, respectively.
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Atmospheric evasion of >R is a function of the relative concentrations of radon in air
and water, of the rate of diffusion of the gas across the air-sea interface, and of
hydrodynamic conditions (particularly wind speed). An empirical relationship between

wind speed and the rate of transfer of a gas across the air-sea interface is given byf
Jatm =K (Cy, — o Cytm) 8

where k is the gas transfer velocity (m d'l), C, is the concentration of the gas in water
(dpm m'3), a is the Ostwald solubility coefficient (dimensionless), and Cyyp, is the
concentration of the gas in the atmosphere (dpm m) (MacIntyre et al 1995). We use o=
0.22 for all calculations, corresponding to an average temperature of 25 degrees Celsius,

and an average atmospheric activity of >’Rn of 560 dpm m (Gesell 1983).

The gas transfer coefficient is a function of wind speed, temperature and salinity.

Wanninkhof (1992) suggests the wind speed-gas transfer velocity relationship:
k=1.92u?/Sc* 9)

with k in units of m d'l, where u is the wind speed (m s'l) and Sc is the dimensionless
Schmidt number, the ratio of the kinematic viscosity of water (at a given temperature and
salinity) to the effective diffusion coefficient of a gas in water (for a given temperature
and salinity). Field and laboratory studies support the assumption that the gas transfer
velocity k is proportional to Sc®° in field conditions with occasional turbulence, rather

-0.67

than to Sc™**’, which is appropriate for smooth surfaces (MacIntyre et al 1995).

Wind speed data used to calculate the atmospheric evasion rate of >’Rn in this
study were obtained from a NOAA weather station located at the Wilmington
International Airport in Wilmington, North Carolina. Daily wind speeds during sampling
days in November 2001 and April 2002, as well as corresponding gas transfer
coefficients and daily atmospheric evasion rates, are shown in Table 2. It is important to
note that, as the estuaries are relatively sheltered relative to the NOAA weather station,
the atmospheric fluxes in Table 2 may be overestimations of the true wind-driven evasion

of ’Rn from the Pages and Futch Creek estuaries.
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2.3.3. A™C flux calculations

Despite the fact that photosynthetic CO, uptake and CO; gas evasion can exert a
strong influence on estuarine DIC (Cai and Wang 1998, Cai et al 1999), estuarine A¥C
values will be determined by mixing between the DIC sources. This is due to the natural
double label provided by paired B¢ and 'C analyses (Spiker 1980), as well as the large
difference between the input A’C values to the Pages and Futch Creek estuaries

(Gramling et al 2003).

AYC (%o) is defined as:

14 2
AYC (%o) = 1000x| 1+ 5°C X 0.975 -1 (10)
1000 sBc Y
1+
1000

where 8'3C values are defined as:

8,3C (%o)= [[( C/ C)sample )—I]XIOOO (11)

(13 Cllzc)standard

and 8'*C values are similarly defined as:

14 12
st*c (%@:H( T sampe ]—1)x1000 (12)

(14C/12C)standard

In this equation for A'*C, the §'*C values are normalized to 8'C = -25 %o to
remove fractionation effects that can result from processes such as CO, gas evasion or
photosynthesis (Stuiver and Robinson 1974). As a result of this normalization, A¥C
values are unchanged by DIC removal processes that fractionate carbon isotopes.
Consequently, groundwater flux estimates based on estuarine DIC AM™C values are largely
unaffected by processes such as gas exchange, photosynthesis, and respiration of fresh

organic matter.
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In coastal North Carolina, fresh water artesian discharge is characterized by a low
AM™C signature acquired from the carbonate aquifer rock, and thus can be used to estimate
the artesian contribution to estuarine freshwater budgets (Gramling et al 2003). After
determining the total fresh water input to an estuary by a salinity mass balance, the fresh
water input can be partitioned between surface sources (including seawater and the
surficial aquifer) and artesian groundwater using a carbon isotope mass balance based on

DIC concentrations and AMC values.

The total fresh water input is calculated by a mass balance between the high tide
inflow salinity and the low tide outflow salinity for each sampling day in each estuary.

The fresh water fraction of the outflow over a tidal cycle is calculated as:

Freshwater fraction =1- M (13)
HT salinity
The flux J (in L m? d*) of fresh water added per day is given by
Freshwater fraction * Tidal prism * Tides/day
Jow = (14)

Area of estuary

where the tides per day and estuary area values are the same as those used to calculate

radium and radon fluxes (Table 1).
2.3.4 Tracer flux calculations: sources of error

There are two important caveats to these flux calculations. The flux of each tracer
was determined by multiplying the low tide tracer excess (low tide activity/concentration
minus high tide activity/concentration) by the total change in volume from high tide to
low tide. This calculation results in a systematic overestimation of the total tracer flux
per tidal cycle, as the maximum water outflow occurs in the middle of the falling tide,
when tracer concentrations are not at their maximum values. However, each of the tracer
fluxes was calculated using this same equation, so that the overestimation of tracer flux is
the same from tracer to tracer, and the relative fluxes determined by each are valid

(although the absolute magnitudes of these fluxes may be subject to error).
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A second source of error in these flux calculations is linked to field sampling
variability: although sampling was intended to occur at the same relative points in the
tidal cycle on each sampling day, this was not always manageable. Consequently, the
magnitudes of the fluxes of a given tracér are not necessarily directly comparable from
sampling day to sampling day — however, because samples of each tracer were collected
concurrently during each tidal cycle, this random error will also not affect their relative

fluxes.

3. Results and Discussion

Radium, radon, A'C, and salinity values for the high tide inflow and low tide
outflow at the Pages and Futch Creek estuaries are shown in Tables 3-4. The high/low
tide values are shown for each sampling day within three different sampling periods,
April 2001, November 2001, and April 2002. Spring and stream radium, radon, A*C,

and salinity values are shown in Table 5.

In this section we present spring flux estimates derived from A”C, 222Rn, 226Ra,
228Ra, ?*Ra, and ***Ra. For each tracer we calculate a hypothetical, “inferred” spring
flux by assuming that all of the tracer flux is spring-derived (though in fact the springs
are not expected to be a primary source of **Ra, ?*Ra, and **Ra, and may only partially
support **Rn and **Ra excess). A*C flux estimates are calculated by first determining
the spring input as a percentage of the total fresh water input, and then by estimating the
total fresh water input to each estuary during each sampling period. We compare the
spring discharge estimates derived from **’Rn and the four radium isotopes with
discharge derived from A'*C. To understand the differences among their inferred spring
inputs, we consider possible additional sources for each of these tracers, including

sediment production and advection of surficial groundwater.
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3.1 A™C estimates of spring flux

Fluxes calculated from A*C represent the fresh, artesian component of the total
SGD to these estuaries. In the Pages and Futch Creek estuaries, springs and streams are
the only fresh water inputs (Table 5), with spring AYC values considerably lower than
AMC values from the other DIC inputs (Gramling et al 2003). As shown in Table 5,
stream inputs were variable with respect to both DIC concentration and AMC value, and
may represent a temporally and spatially variable mix of seepage from the surficial
aquifer (which, as shown in Gramling et al (2003), has a high A'C value) and low-A"C
artesian inputs. Once the total fresh water input is determined by a salinity mass balance
(as a percentage of the outflow), the fresh input can then be parsed into spring input and

stream input using AC.

Three-component mixing models for each estuary, with spring, stream, and ICW
inflow A'C and DIC values, were used to calculate the relative inputs of spring and
stream to the total fresh water budget of each estuary during each sampling period.
Separate mixing models for each sampling day in April 2001, November 2001, and April
2002 are described in detail in Chapter IIl. The AM™C data shows that the spring flux was
essentially 100% of the total fresh water budget to both estuaries in April 2001 and April
2002, and to the Futch Creek estuary in November 2001, while the November 2001 Pages
Creek estuary fresh water inputs were 10-50% spring (Table 6). The range of these-
November 2001 spring input estimates is determined by the variability in stream AYC

and DIC values (as described in Chapter III).

Fresh water fluxes were calculated using Equations (13) and (14), and the estuary
values from Table 1. To determine spring flux estimates, the total fresh water flux to the
Pages Creek and Futch Creek estuaries is assumed to be 100% spring, with the exception
of the Pages Creek November 2001 samples. For these samples, we calculate minimum
(10%) and maximum (50%) estimates of spring flux as a percentage of the total fresh
water flux. A'*C-derived spring flux estimates to each estuary during each sampling

period are shown in Table 7.
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3.2 Spring flux estimates: 2 2Rn, 226Ra, 2‘?‘gRa, 223Ra, and ***Ra

We make the initial assumption that the excess 222Rn, 226Ra, 228Ra, 22Ra, and
224R a activities in both estuaries during all sampling periods are entirely supported by .
artesian inputs. With this assumption, we use the measured activities of each of these
tracers in the springs to make an estimate of the spring discharge rate that would be

necessary to support the observed excess of each tracer.
3.2.1 *2Rn estimates of spring flux

Equation (7) (above) shows a mass balance of the sources and sinks for 22Rn. In
addition to inflow and outflow from the ICW, the possible sources of *’Rn include
springs, fluxes from the sediments, and production within the water column, while the

possible sinks include atmospheric evasion and decay within the water column.

Because the surface water activities of the parent isotope of 222Rn, 226Ra, were
small (~ 120 - 220 dpm m™) relative to **?Rn surface water activities (~ 1400 - 24000
dpm m™), production of *?Rn within the water column was not expected to be an
important source term, compared with spring and sediment fluxes, and is assumed to be
zero. Decay of ?2?Rn within the water column was also found to be negligible compared
to atmospheric evasion of 222Rn, due to the short residence time of water within each

estuary (~ 0.5 d).
To make the initial spring flux estimates, we assume that sediment fluxes of 2Rn
are negligible relative to spring inputs of 222Rn. Equation (7) then becomes:
J222rn = Jspring— Jatm (15)

where fluxes are in units of (dpm m* d'l). J220rn represents the observed excess 222Rn
activities, and J,m, as was described earlier, is dependent on wind speed and on the
concentration of *?Rn in the water column (Table 2). Using the atmospheric fluxes
presented in Table 2 and the excess 222Rn for each sampling day, Equation (15) is then

solved for Jspring.

The **’Rn-estimated rate of spring discharge (L m?2d") is calculated as:
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spring

Spring discharge = [EZE—L (16)
Xkpring

Spring R activities ranged from 200 to 600 dpm L7 (Table 5). To calculate a
minimum rate of spring discharge, the highest 222Rn actiVity observed in any of the
springs (600 dpm L) is used in Equation (16). It should be noted that, as observed in
Chapter IV, ??Rn activities measured in the springs are an order of magnitude lower than
222Rn activities in the wells screened in the Castle Hayne aquifer. Therefore, gas evasion
from the springs prior to discharge into the estuaries may be a considerable loss term for
222Rn. Additionally, it is possible that 222Rn activities in springs not measured in this
study, but still discharging into these estuaries, could be much higher (wilich would then

decrease the spring discharge rate required to support the observed excess 22Rn).

222Rn-derived spring discharge estimates calculated with this method for each

estuary and sampling day are shown in Table 7.
3.2.2 *Ra, *®Ra, ***Ra, and ***Ra estimates of spring flux

The primary sink terms for each radium isotope included decay within the water
column. Because the residence time of the water in the estuaries is less than a day, decay
is not expected to be a major source term, and even for the short lived isotopes 2%Raand

223Ra, decay was determined to be negligible. Therefore, Equation (2) becomes:
JRa = Jspring a7

As for 222Rn, the spring discharge rate is calculated (in L m?d?)as:

J_.
Spring discharge = R e (18)
A Kpring

where [Ra]spring is the spring Ra activity in dpm 100L™ for each of the four radium
isotopes. We use the maximum “°Ra (49 dpm 100L™), *®Ra (14 dpm 100L™), *’Ra (7
dpm 100L™"), and ***Ra (21 dpm 100L™") activities measured in the springs to determine a
minimum spring discharge rate required to support the observed excess of each radium

isotope on each sampling day (Table 5). We consider only the dissolved radium
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activities in the springs for this calculation, rather than the particulate radium activities;
as discussed in Chapter IV, fluxes of particulate radium from the springs were negligible
compared to the measured dissolved fluxes. The estimated spring discharge rates derived

from each radium isotope are shown in Table 7.
3.2.3 “Inferred” spring flux comparison

Spring flux estimates derived from all six tracers fell into two groups (Figure 4).
The average spring flux estimates derived with 228Ra, ?®Ra, and **Ra ranged (with one
exception) from 400 L m™ d”' to 2700 L m d”!, while flux estimates derived with A'*C,
222Rn, and **Ra ranged from 1 L m2d't0200L m?d". To support the observed excess
of 228Ra, 223Ra, and 224Ra, therefore, spring discharge estimates would need to be 1-2
orders of magnitude higher than the A'C spring discharge estimates. Because AYC
tracks only spring discharge but 228Ra, *Ra, and **Ra have other sources within the
estuaries, this suggests that springs were not a primary source for 22%Ra, ®Ra, and ***Ra

to either estuary.

In the Pages Creek estuary, spring discharge estimates derived from fluxes of
226Ra were at least three times higher on all sampling days than spring fluxes derived
from **’Rn or A™C (Figure 5). In the Futch Creek estuary, A'MC estimates were higher in
April 2001, but during the other sampling times, 226Ra-estimated spring discharge was
two to five times higher than discharge estimated with A™C. The April 2001 sampling
showed the highest change in salinity between high and low tide for the Futch Creek
estuary (averaging 10 ppt) (Table 4), and AC mixing models suggest that this fresh
water input was entirely from the springs (Chapter III). However, in April 2001, the
2%6Ra spring flux estimates were the smallest of all sampling periods, at only 20% of the

AC-estimated spring fluxes (no estimates were made with ?’Rn during this time).

For both estuaries, the sampling days in November 2001 had the smallest change
in salinity between high and low tide (ASal), with ASal always < 0.3 ppt at Pages Creek,
and < 3 ppt at Futch Creek. As discussed in Chapter III, the ASal was linearly related to

the high/low tide increase in A'C value in both estuaries, although this was particularly
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evident at the Futch Creek estuary, where the change in both salinity and AMC was
generally larger. The November 2001 A" C-derived spring flux estimates were also the
smallest of all sampling times. However, although the fresh water input was relatively
small during this time, the *’Rn and the 226Ra flux estimates were high relative to other
sampling days, and in November 2001, the A C-derived spring fluxes represented only
1% (at Pages Creek) - 20% (at Futch Creek) of the fluxes derived from either 222Rn or
226Ra. Therefore, if the AC-derived fluxes are assumed to represent spring discharge,

the springs were not the primary source for either 222R1 or **Ra in November 2001.

In April 2002, *Ra spring flux estimates were highest in both estuaries, but were
only twice as high as A¥C and *Rn flux estimates. A*C and *?Rn estimates were
similar in both estuaries, suggesting that during this sampling period, the springs

dominated the budget of *’Rn, and supplied ~ 50% of the excess 226Ra in each estuary.

This suggests that additional sources contributed to the observed excess 222Rn and
226Ra during November 2001 in the Pages Creek estuary, and to the excess 226Ra during
April 2001 in the Pages Creek estuary. In the case of 226Ra, this may be advection from
the surficial groundwater, while for 222Rn it may be regeneration within estuarine
sediments as well as advection from the surficial aquifer. The non-spring-derived fluxes

of 2°Ra and **Rn were variable from sampling period to sampling period (Figures 4 and
3).

3.3 Estimation of other contributions to excess 22ZRn, 226Ra, 228Ra, 23 Ra, and 22Ra

As discussed above, additional inputs must have contributed to the 226Ra budget
in the Pages Creek estuary (and to the 222R n budget in Pages Creek during November
2001), as well as to the 22’Ra, 2*Ra, and ?**Ra budgets in both estuaries. Some of the

possible input sources for each isotope are considered below.
3.3.1 Additional sources of **Rn

In addition to spring discharge, 222Rn may be supplied to estuarine surface waters

by fluxes from the sediments, including both advective and diffusive fluxes (Figure 1).
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However, because pore water concentrations of 222Rn were not measured in this study,
we cannot distinguish between these fluxes to the Pages and Futch Creek estuaries.
Previous studies have made measurements of diffusive fluxes of *’Rn in Florida Bay and
the Gulf of Mexico using several different methods (including sediment equilibration
experiments and measurements of pore water gradients) (Cable et al 1996; Corbett et al
2000). However, the maximum diffusive fluxes estimated in these studies (~ 2600 dpm
m d'!) would account for less than 20% of the observed excess *’Rn from either estuary
during November 2001 (Table 8). Therefore, diffusive fluxes were not likely to have

been the primary source of the excess 22Rn during November 2001.
3.3.2 Additional sources of 226Ra, 228Ra, 223Ra, and ***Ra
3.3.2.1 Sediment production

The decay constants for ***Ra and 2Ra(A=6.8x10" yr' and A =2.3 x 10’ yr,
respectively) are large enough that the sediments could provide a significant source of
these isotopes to the estuaries. For 228Ra, the decay constant is smaller (A = 1.2 x 100 yr
1), but could result in some regeneration within the sediments on the time scales in this
study. The decay constant for 2%6Ra is very small (A=4.3 x 10 yr'l) and the resulting
small rate of regeneration within the estuarine or tidal sediments was not likeiy tobe a
significant source of excess 2%Ra to the estuaries during the time scale of interest (Rama

and Moore 1996).
3.3.2.2 Pore water advection

In both the Pages and Futch Creek estuaries, the **Ra/***Ra of both the spring
and stream inputs was low, at 228Ra/**"Ra ~ 0.5:1 for the springs, and 0.6:1 for the
streams (Figure 6a-b). However, the observed 22%Ra/***Ra in the estuaries was about
1.5:1, with low tide 2®Ra and **Ra activities both increasing over high tide activities
along the 1.5:1 gradient. This suggests that, with the springs as one source for 22%6Ra to
the estuaries (but not significantly for 228Ra, thereby lowering the 228Ra/®Ra AR) an

additional source is adding 228Ra and **Ra at an activity ratio that is higher than 1.5:1.

286



Surficial groundwater seepage is a potential source of 228Ra and **®Ra to the
estuaries. Pore water activities of *’Ra and *Ra from the North Inlet marsh in South
Carolina had very high 225Ra and ?*®Ra activities relative to surface waters, and had
measured *®Ra/?Ra AR values ranging from 7:1 to 14:1 (Table 9) (Rama and Moore
1996; Krest et al 2000).

Three-component mixing diagrams between Pages and Futch Creek inflow and
spring data, and the pore water 228Ra/**Ra AR from North Inlet, SC, show that average
Pages Creek and Futch Creek estuarine outflow 28R a and *°Ra activities fall within the
mixing triangle, but close to the inflow-spring mixing line (Figures 7-8). The pore water
contribution to the outflow can be estimated by constructing a three-endmember mixing

calculation. For 226Ra, this calculation is:

= (Xsw><226 Ragy )+ (Y

226
Ra spring

x*?%Ra cpring )+ (Z x**Ra

outflow pore water porewater )

(19)

where X,Y, and Z represent volume fractions of each component, and SW = the high tide
inflow component. A similar calculation is used for 22%Ra. The inflow fraction is
determined by a salinity mass balance, while the spring and pore water contributions to
the outflow are determined by constructing mixing lines to match the outflow
composition. If the pore water inputs to the Pages and Futch Creek estuaries have similar
226Ra and ??®Ra activities to the North Inlet, SC average pore water, a contribution of only
1% by volume to the total outflow would be required (Figures 7-8) (Rama and Moore
1996). If the pore water input activities were similar to the Rama and Moore (1996) seep
water, a contribution of 4% to the outflow would be required to match the observed
outflow 2?Ra and *®Ra activities. Since these salt marsh pore waters are likely to have
salinity values similar to seawater, these small fractions (1 —4%) would not be seen in

the estuary salinity budgets.
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4. Comparison of A C-, ?2Rn-, and **5Ra-derived flux estimates from Pages and Futch

Creeks with SGD estimates from other studies

The estimates of SGD (in m> d!) to the Pages and Futch Creek estuaries
calculated in this study were one to three orders of magnitude smaller than geochemical
tracer-based SGD estimates from other studies in the southeastern United States (Table
10). **Ra-derived SGD from the Futch Creek estuary was similar to SGD fluxes from
Waquoit Bay, MA (calculated by both *°Ra and by seepage meters), though 226Ra-

derived fluxes from the Pages Creek estuary were up to an order of magnitude higher.

226R a-derived estimates of total SGD from the Pages Creek estuary were an order
of magnitude lower than *’Ra-derived estimates of SGD from North Inlet, SC (Table
10). At the Futch Creek estuary, 226R a-derived estimates were about two orders of
magnitude lower. The primary SGD source to the North Inlet site is the salty surficial
aquifer, and there are no significant fresh water inputs to this site (including artesian
inputs) (Krest et al 2000). However, artesian inputs dominated the excess 2Ra in the
Futch Creek estuary, so that if spring discharge (represented by AMC flux) is subtracted
from the total *Ra-derived SGD to this estuary, the remaining flux from non-spring
sources is negligible. In the Pages Creek estuary, the majority (50-99%) of the excess
226Ra is derived from non-spring sources; if spring discharge (represented by AYC flux)
is subtracted from the total >*’Ra-derived SGD, the remaining flux would be about two

orders of magnitude lower than SGD from North Inlet.

?22Rn-derived estimates (and A'*C-derived estimates) from Pages Creek and Futch
Creek were three orders of magnitude lower than 2’Rn estimates of SGD flux to the
northeast Gulf of Mexico (Cable et al 1996). In the NE Gulf of Mexico, though *’Rn
may be transported to surface waters both by discharge from the Floridan aquifer and by
recirculated seawater, seepage and recirculated seawater may predominate over point-
source discharge. However, the excess ’Rn in both the Pages and Futch Creek estuaries
is dominated by spring discharge. It is possible that the magnitude of point-source

artesian fluxes to the NE Gulf of Mexico is similar to artesian flux to the Pages and Futch
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Creek estuaries (Florida springs have been observed to discharge at rates from ~10° - 107
m? d), but that spring fluxes in that region are masked by much larger fluxes resulting

from to seawater recirculation.

5. Conclusions

An intercomparison of total groundwater flux estimates using fluxes of the
geochemical tracers A”C, 222Rn, 226Ra, 228Ra, 223Ra, and ***Ra was performed in two
estuaries in southeastern North Carolina. While AC is a tracer of the fresh, artesian
component of the total SGD, fluxes of radium and radon are likely to include both

terrestrially-driven and tidally-driven components of the total SGD.

To compare tracer-derived fluxes, “inferred” spring discharge estimates were
made by assuming that the low tide excess activity over the high tide activity of each
tracer was supported entirely by spring inputs. In both estuaries, spring discharge derived
from fluxes of 2®Ra, 22’Ra, and ***Ra were at least an order of magnitude higher than
discharge estimates derived from AY™C, ?Rn, and **°Ra, suggesting that springs were not

a primary source for 228Ra, Ra, and ?*Ra to either estuary.

In the Pages Creek estuary, spring discharge estimates derived from fluxes of
226Ra were at least two times higher on all sampling days than spring fluxes derived from
222Rn or A™C. In the Futch Creek estuary, flux -estimates derived from ?*’Ra were only
~10% of the A'C-estimated spring fluxes in April 2001 (no estimates were made with
222Rn during this time), but during the other sampling times, ***Ra-, *’Rn-, and A'*C-
estimates of spring discharge compared well, and were generally within error. This
suggests that additional sources contributed to the observed excess 222Rn and **Ra during
November 2001 in the Pages Creek estuary, and to the excess 26Ra during April 2001 in
the Pages Creek estuary. In the case of 226Ra, an additional source may be advection
from the surficial groundwater, while for *’Rn it may be regeneration within estuarine

sediments.
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Table V-1: Area, tide range, and tidal prism data from the Pages and Futch Creek estuaries

Estuary area Date

(m’)
Pages Creek estuary 6.74E+05 Apr-01
Nov-01
Apr-02
Futch Creek estuary 4.38E+05 Apr-01
Nov-01
Apr-02

Average tide
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0.9
1.1
0.5

0.5
0.8
04

range (m)

0.8

0.6

Average tidal prism during

sampling period (m®)

5.92E+05
7.37E+05
3.30E+05

2.40E+05
3.35E+05
1.71E+05

5.53E+05

2.48E+05
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Table V-6: Fresh water inputs as percent of outflow, and spring inputs as percent of fresh inputs.

% fresh in outflow % of fresh input = spring ~ HT-LT salinity

(ASal)
Pages Creek 11/7/99 11 100 3.3
7/26/00 35 0 11.687
4/21/01 6.7 100 1.490
4/22/01 2.6 100 0.908
11/12/01 0.43 100 0.157
11/13/01 0.79 100 0.286
11/15/01 0.26 10-44* 0.095
11/16/01 0.21 16-48* 0.079
11/18/01 0.38 18-50* 0.138
4/13/02 2.8 e 1.023
4/14/02 2.7 100 0.993
4/16/02 2.3 100 0.826
Futch Creek** 4/21/01 33 100 11.894
4/22/01 24 100 8.493
11/12/01 7.1 100 2.565
11/13/01 5.6 100 2.035
11/15/01 4.0 100 1.470
11/16/01 1.5 100 0.519
11/18/01 53 100 1.921
4/13/02 9.6 @ 3.465
4/14/02 83 100 2.983
4/16/02 14 100 5.148

* Varies with stream endmember
** Stream input may be negligible

® AMC not analyzed.
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Table V-8: Literature diffusive fluxes of 222Rn as percent of total 222Rn excess

Ja22rn Jaig= % of Jyor4
dpm mZa?’
Jair (dpm m? @) 2600*

Pages Creek estuary
11/12/01
11/13/01 15057 17
11/15/01
11/16/01 12745 20
11/18/01 30894 8

Futch Creek estuary
11/12/01 26879 10
11/13/01 20832 12
11/15/01
11/16/01 25147 10
11/18/01 44702 6

* from Corbett et al 2000
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Figure V-1

Conceptual model of estuarine sources and sinks of the geochemical tracers of
groundwater dischar;e: AY™C, 2Rn, ?%Ra, ?*Ra, *Ra, and *'Ra. Springs supply low-
‘Cc DIC, 222Rn, and 26Ra, and to a lesser extent 228Ra, 223Ra, and *Ra. *°Ra and ***Ra
are also supplied by advection from the surficial aquifer, which can enter the estuary via
seepage through the bottom sediments. 228Ra, *®Ra, and **’Ra are regenerated within
both bottom sediments and tidally inundated marsh sediments, and can be released to
estuarine surface waters via diffusion or advection from the bottom sediments, or during
draining of the marsh sediments on the falling tide. ?22Rn is also regenerated within the
sediments, and can enter estuarine surface waters via diffusion. The primary sink term
for A™C and all four radium isotopes is low tide outflow from the estuaries; for 2R, the
primary sink terms are outflow and evasion to the atmosphere.
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Figure V-2

Pages and Futch Creek estuaries in southeastern North Carolina, with sample locations.
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(® Estuary stations (April 2001, November 2001, April 2002)
@® Streams (November 1999, July 2000, April 2001, November 2001, April 2002)

/\ Largest springs (November 1999, July 2000, April 2001, November 2001, April 2002)
A Other springs (April 2001)

Figure V-2
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Figure V-3

A conceptual cross-section of the interaction between a coastal groundwater system and
estuarine processes in the Onslow Bay region. (1) Spring discharge can occur both
within the estuary and in the upper marsh as a result of a leaky or locally absent confining
unit over the Castle Hayne aquifer; (2) advection of groundwater in the surficial aquifer
leads to seepage into streams or directly into the estuary via bottom sediments; (3) tidal
filling of marsh sediment pore waters during rising tide stage and subsequent draining of
the sediments during falling tide; (4) mixing between the advected groundwater and tidal
inundation of sediments; (5) tidal oscillation of brackish water zone through surface
aquifer sediments; and (6) tidal pumping of seawater into surface sediments. Arrows
indicate fluid movement.
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Figure V-4

April 2001, November 2001, and April 2002 “inferred” spring discharge estimates (in m>
d") based on A”C, 222Rn, 226Ra, 228Ra, 223Ra, and 2**Ra fluxes from the Pages and Futch
Creek estuaries. Estimates are made by assuming that springs are the only source of each
tracer to these estuaries. Error bars represent variability in flux estimates for all sampling
days within each collection period, and in each estuary. As discussed in the text, in both
estuaries, spring discharge derived from fluxes of 228Ra, *’Ra, and *'Ra were at least an
order of magnitude higher than discharge estimates derived from AM™C, #Rn, and ***Ra,
suggesting that springs were not a primary source for 2%Ra, *Ra, and ***Ra to either
estuary.
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Figure V-5

Smaller-scale graph of AYC-, ??Rn-, and **Ra-derived “inferred” spring flux estimates
(in m> d) from the Pages and Futch Creek estuaries, grouped by sampling period. Dark
blue bars represent AMC-derived spring flux estimates, pink bars represent *22Rn
estimates, and light blue bars 22Ra estimates. Error bars represent variability in flux
estimates for all days within each collected period and estuary. Note that no ?22Rn data
was collected from either estuary in April 2001. These data show that while the springs
were a significant source of 226Ra and could support all of the observed excess *2Rnto
both estuaries during A;)ril 2002, spring fluxes were too small in November 2001 to
support either 2’Rn or %6Ra excess. One or more additional sources therefore
contributed to the observed excess *?Rn and **°Ra during November 2001, and to the
excess “2°Ra during April 2001 and April 2002. In the case of 226Ra, this may be
advection from the surficial groundwater, while for 222Rn it may be regeneration within
estuarine sediments.
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Figure V-6

28R a and #*Ra activities in springs, streams and estuaries. a) Pages Creek estuary. b)
Futch Creek estuary. Estuary 228 a/*®Ra activity ratios averaged ~1.4:1, while the

228R a/*®Ra activity ratios in the springs and streams tended to be less than 0.6:1.
Outflow estuary ?*Ra and **°Ra activities (filled symbols) were higher than inflow
activities, suggesting that the additional source of “26Ra and ?**Ra to both estuaries has a
high ®Ra/*°Ra AR (> 1.5:1).
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Figure V-7

228R a and ?°Ra three-component mixing curves between average Pages Creek estuary
inflow, average spring, and North Inlet, SC pore water activities. Other pore water and
spring 2®Ra and “**Ra activities are also shown. The low tide outflow ?2%Ra and *°Ra
activities are also shown (grey square). a) Mixing with high-activity, high 2R a/*%Ra
AR (11:1) pore water (radium activities from Rama and Moore 1996). b) Mixing with
low-activity, low 2*Ra/**Ra (7:1) pore water (Rama and Moore 1996). The pore water
percent contribution to the Pages Creek outflow composition varies from 1 to 3% by
volume.
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Figure V-8

228p a and **°Ra three-component mixing curves between average Futch Creek estuary
inflow, average sgring, and North Inlet, SC pore water activities. Other pore water and
spring **Ra and 26Ra activities are also shown. The low tide outflow ***Ra and ***Ra
activities are also shown (grey square). a) Mixing with high-activity, high 28Ra/*Ra
AR (11:1) pore water (radium activities from Rama and Moore 1996).

b) Mixing with low-activity, low 28R a/**Ra (7:1) pore water (Rama and Moore 1996).
The pore water percent contribution to the Futch Creek outflow composition varies from
1 to 4% by volume.
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Chapter VI: Synthesis and Conclusions

Introduction: The multi-tracer approach to estimates of SGD

In recent years, the term SGD has been increasingly used to include not only the
net discharge of fresh groundwater to the ocean (as supplied by aquifer recharge), but
also to include the recirculation of seawater through coastal aquifers, driven by both
“wave-setup” (a temporary rise in sea level due to wave action) and by tidal oscillations
(e.g. Li et al 1999; Moore 1999; Burnett et al 2002). This more general definition is used
in this thesis as well, and forms the basis for the intercomparison of tracer fluxes
presented here (and in, for example, Burnett et al 2002 and Cable et al 2003). Because
each tracer is controlled by a different set of input processes, the flux of each tracer
reflects these three SGD components differently, so that an intercomparison of these
different methods provides a more comprehensive picture of the total flux.

Earliest global estimates of SGD into oceans, defined as fresh, terrestrially-driven
discharge, estimated it to be from 0.2 — 10% of river flow (Garrels and Mackenzie 1971).
However, Moore (1996) used coastal 226Ra activities to suggest that SGD fluxes to the
South Carolina coast were as much as 40% of the total river flux. A study by Li et al
(1999) showed that the terrestrial fluxes, driven by aquifer recharge, were only 4% of the
total SGD measured in the Moore (1996) study, while the remaining 96% of the flow was
driven by tidal and wave oscillations. These local circulation and oscillating flows can
contribute significantly to the rate of SGD to the coast, and therefore these local effects
can be responsible for much of the transfer of chemical species, including land-based
pollutants and nutrients, to the ocean (Li et al 1999).

Although it is important to specify how SGD is defined when making flux
estimates, both terrestrially-driven and circulation fluxes can have a significant impact on
coastal geochemistry. The budgets of nutrient species may be influenced by either direct
discharge of fresh groundwater into coastal waters, or by chemical reactions occurring
during seawater recirculation through shallow coastal aquifers (Taniguchi et al 2002).

The relative importance of these terrestrially-driven fluxes and of seawater recirculation
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to the transfer of nutrients and pollutants to coastal waters is likely to vary by location.
The simultaneous study of multiple tracers provides a mechanism by which to identify
the relative magnitudes of these components of SGD, and by which to evaluate the inputs

of chemical species from each component.

Conclusions/contributions of this thesis

This thesis describes a new, radiocarbon-based method for quantifying one
component of the total groundwater flux into coastal waters: the fresh flux from confined
aquifers. Using this method, the fresh water inputs to the Pages Creek estuary were
shown in Chapters II and III to be dominated by direct discharge from a confined aquifer
via springs during November 1999, April 2001, and April 2002. Stream flow accounted
for all the fresh water inputs in July 2000, while in November 2001, springs were
responsible for 10-50% of the fresh water input to this estuary. In Chapter III, spring
inputs were shown to dominate the fresh water inputs to the Futch Creek estuary during
all sampling times (April 2001, November 2001, and April 2002).

Although the results from the Pages Creek estuary suggest that spring and stream
inputs alternate in their dominance of fresh water inputs to this estuary, the relative
magnitude of these inputs is to some extent dependent on the choice and variability of
endmembers used in the mixing models. The two primary spring sites, sampled five
times over four years, were highly consistent with respect to AYC. The substantial
variability observed in the stream A'*C values is likely to reflect, at least in part, variable

contributions of artesian groundwater to the streams.

In both estuaries, spring discharge derived from fluxes of 228Ra, *°Ra, and **Ra
was at least an order of magnitude higher than discharge estimates derived from AYC,
222Rn, and ***Ra, suggesting that springs were not a primary source for 228Ra, ?’Ra, and
22Ra to either estuary. While the springs were a significant source of *°Ra and could
support all of the observed excess **’Rn during April 2002, spring fluxes were too small
in November 2001 to support either 2?Rn or *°Ra excess. This suggests that additional

sources contributed to the observed excess *’Rn and ***Ra during this sampling period,
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as well as to the excess 2?°Ra during April 2001 and April 2002. In the case of 226Ra, the
additional source is hypothesized to be advection from the surficial groundwater, while
for #’Rn it may be regeneration within the sediments, possibly transported by diffusion
or by advection through the surficial aquifer. These non-spring-derived fluxes of 6Ra

and ?*’Rn were highly variable among the sampling periods in this study.

In contrast, previous studies comparing 226Ra, 2®Ra (e.g. Rama and Moore 1996;
Krest et al 2000; Kelly and Moran 2002) and 22Rn (e. g. Hussein et al 1999; Swarzenski
et al 2001; Burnett et al 2002; Cable et al 2003) have determined similar estimates of
SGD from each tracer. As an example, at the North Inlet, SC, salt marsh, measurements
of the long-lived radium isotopes 226Ra and *®Ra appeared to be coupled and provided
similar estimates of SGD (Rama and Moore, 1996; Krest et al 2000). However, at North
Inlet, the source of the measured SGD is assumed to be the surficial aquifer alone (with
very high 228R a and 2*%Ra activities); there are no significant fresh water inputs to this site
(including artesian inputs). 226Ra- and *®Ra-based estimates of SGD from the
Pettaquamscutt estuary, RI, were also found to be similar; in this estuary, excess radium
is also attributed to a single source: weathered bedrock with a constant 28R a/*"Ra
activity ratio (Kelly and Moran 2002).

Burnett et al (2002) conducted an intercomparison study (using 222Rn, 2°Ra,
228Ra, seepage meters, and hydrogeologic modeling) to estimate SGD to the northeast
Gulf of Mexico, a region that may receive inputs both from nearshore seepage from a
(sandy) surficial aquifer and from the shallowest confined aquifer (limestone) in the
region. In that study, 222Rn-based estimates of SGD compared well with both 226Ra and
228Ra estimates and with seepage meter estimates, while hydrogeologic models calculated
terrestrial fluxes that were an order of magnitude lower. Cable et al (1996), in an earlier
study in the northeast Gulf of Mexico, noted that while submarine springs exist in this
area, disseminated seepage and recirculated seawater are likely to be much more
volumetrically important to the budgets of dissolved species in this coastal area than

springs.
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In the North Carolina estuaries, spring inputs (originating from a limestone
aquifer with elevated 222Rn and **Ra but not ?*Ra activities) were a significant portion
of the total SGD (particularly at Futch Creek), so that fluxes of these tracers were
decoupled from the 2**Ra fluxes. **’Rn in the Pages and Futch Creek estuaries was
largely controlled by spring inputs. 226Ra fluxes were at least partially controlled by
spring inputs, while 228pa fluxes showed very little spring influence. Although pore
water radium measurements would provide additional constraints on estimates of SGD
from these estuaries, it is still apparent that 226Ra-based SGD estimates and ***Ra-based
SGD estimates differed by an order of magnitude.

This suggests that in a region with groundwater inputs from two different sources,
each with different relative *°Ra and ***Ra activities, these two tracers may provide very
different estimates of SGD. However, in a site where recirculation-driven seepage
dominates the total SGD (over fluxes from a confined limestone aquifer), 222Rn and **%Ra
fluxes are likely to reflect these recirculation fluxes, and to provide similar flux estimates
to estimates derived from >Ra. Consequently, whether these tracers will provide similar
estimates is likely to be a site-specific question. This further supports the idea that a
multi-tracer approach to quantifying discharge at the coast provides the most

comprehensive information about the various components contributing to the total SGD.

Suggestions for future research

There are many ways to build on the work presented in this thesis. One important
direction would be to apply this multi-tracer study to additional sites that may be similar
geologically to southeastern North Carolina but where the presence of confined
groundwater inputs is less certain.

Additionally, while organic matter decomposition in salt marshes did not appear
to be a source of low A'*C DIC to the Pages and Futch Creek estuaries, respiration DIC-
A™C additions can be further constrained by a more comprehensive assessment of pore

waters at other sites.
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Within the Pages and Futch Creek estuaries, field observations of the relative
magnitude of the spring and stream inputs appeared to agree with the results derived from
the A'C mixing models: that spring fluxes generally dominated fresh water inputs.
Ground-truthing of the AMC-based estimates would be provided by actual flow gauging
of these spring and stream inputs. Additionally, sediment pore water radium activities
were not measured in these estuaries; such measurements would provide a more concrete
estimation of the relative contribution of pore waters to the excess radium budgets.

Spring-neap tides may have a dramatic effect on the rate of SGD, and therefore on
chemical transfer to coastal waters (Taniguchi 2002; Kim and Hwang 2002). Monthly
measurements of SGD using automated seepage meters have found that SGD can
increase sharply from neap to spring tide, suggesting that fluxes of recirculating seawater
into surface waters via estuarine bottom sediments, as controlled by tidal pumping
oscillation, may be an important control on the total SGD rate (Taniguchi 2002).
Although sampling in the Pages and Futch Creek estuaries attempted to observe some of
the spring tide (November 2001) and neap tide (April 2002) variability, these sampling
efforts lasted only for 2-5 days per sampling period, and were insufficient to capture the
full range in fluxes resulting from monthly tidal variation. A true assessment of the
degree of possible enhancement of recirculation fluxes during spring tide would require
at least a full month of daily sampling.

- Finally, because SGD is an important pathway for nutrients to coastal waters, an
important direction of future research would be the determination of nutrient fluxes from
the Pages and Futch Creek estuaries. Though nutrient samples (NO,” + NOj3’, and NH,")
were collected concurrently with all radium samples in this thesis (data presented in
Appendix A), fluxes of these nutrients from the estuaries were not calculated, nor were
they partitioned into relative fluxes of nutrients from the different groundwater sources:
the springs (in which nutrients were measured) and sediment seepage, driven by tidal and
wave forces (in which nutrients were not measured). An estimation of these nutrient
fluxes would provide an important window into the relative importance of these sources

to the nutrient budgets of this coastal region.
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Appendix A: Nutrient concentrations in Pages and Futch Creek estuaries

Introduction

Submarine groundwater discharge has been shown to be an important pathway for
the transport of nutrients, including dissolved inorganic nitrogen (DIN) to estuaries and
coastal areas (e.g. Giblin and Gaines 1990; Valiela et al 1990; Krest et al 2000). DIN (as
NO; + NO, and as NH;") was measured in the Pages and Futch Creek estuaries (in high
tide/low tide pairs, time series, inlets, springs, and streams) in November 2001 and April
2002, concurrently with radium, radon, and AYC sampling.
Nutrient Sampling and Analysis |

All nutrient samples were collected by hand at each site, syringe-filtered through
a 0.2 um filter into a 100-m! acid-cleaned polyethylene bottle and frozen prior to

analysis. Nutrients (NO3"+ NO; and NH,*") were quantified with an autoanalyzer.

Results and Discussion

Nitrate levels in November 2001 were higher in both the estuaries and in the inlets
relative to April 2002 (Tables A1-A3, Figures A1-A2). While Futch Creek exports
nitrogen as NO3™ + NO; and as NH," in both November 2001 and April 2002, nitrogen is
not always exported in Pages Creek. In November 2001, NO3s™ + NO, and NH,* are
exported on the days immediately surrounding the spring tide, but are imported on other
days. Pages Creek NH," fluxes were generally greater than Futch Creek fluxes, with the
exception of the day when NH,* was imported.

April 2002 time series data for NO3™ + NO;" in both creeks show an increase
leading up to low tide, followed by a rapid decrease when the tide turns (Table A-2).
During the Futch Creek estuary time series, NHy" in the water column increased initially,
followed by a sudden drop and then a rise to a maximum value at low tide, which then
dropped off sharply as the tide turned. The Pages Creck estuary time series also showed
a slight drop during the falling tide, though of a smaller magnitude.
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In general, more nitrogen was exported from the system in April 2002 than in
November 2001, with the exception of a few events during the spring tide. Inflow
nitrogen concentrations, in the form of both NO;™ + NO," and NH,*, were five to ten
times higher in the fall than in the spring, possibly reflecting nitrogen inputs from the
inlet marshes, which then re-entered the estuaries on the rising tide. Outflow
concentrations of NH,;* from the inlets in November 2001 were two to five times higher
than inlet outflow concentrations in April 2002, and NO;™ + NO;’ in the outflow from the
inlets was about ten times higher in November 2001 than in April 2002.

Roberts (2002) observed a sudden, large spike in NO3™ (from <1 in August 2001
to ~10 mg/L in September 2001) in the farthest inland Futch Creek spring (map legend
E10 in Chapter HI figure III-1), though not in other springs. In that study, NO3’
concentrations in this spring remained above the North Carolina state nitrate standard, 10
mg/L, through most of the autumn, rising to a maximum of 16 mg/L in December 2001
before dropping back to the winter/spring average of <1 mg/L by January 2002.
However, NO; + NO; concentrations measured in the same spring for this study were
only 1.3 mg/L (21.5 pM) in November 2001 and 0.9 mg/L (15.2 uM) in April 2002.

NOj5" in the Futch and Pages Creek estuaries, as noted, was considerably elevated
in November 2001 relative to April 2002. High NOs’ levels were also observed in the
outflow from marsh in Rich Inlet. This fall increase in NO3™ may be a seasonal feature,
with nutrient levels in the estuaries strongly affected by summer fertilization of the
Porters Neck Golf Course, up-dip of the site. Mallin et al (2000) describes the
fertilization schedule of the golf course, as of 1982, as consisting of three major events, in
July, September, and November. This is highly consistent with observed elevated levels
of NOj’ in the system during the November 2001 sampling time, as described in Roberts
(2002). However, as is noted in Roberts (2002), and as is apparent from our own spring
NO; data, these nutrient levels are highly spatially (and perhaps temporally) variable,

from well to well and from spring to spring.

328



References

Giblin, A. E. and A. G. Gaines. 1990. Nitrogen inputs to a marine embayment: the
importance of groundwater. Biogeochemistry 10, 309-328.

Kirest, J. M., W. S. Moore, L. R. Gardner, and J. T. Morris. 2000. Marsh nutrient export '
supplied by groundwater discharge: Evidence from radium measurements. Glob.
Biogeochemical Cycles 14, 167-176.

Mallin, M.A., L.B. Cahoon, J.J. Manock, M.F. Merritt, M.H. Posey, R.K. Sizemore, T.D.
Alphin, K.E. Williams, E.D. Hubertz. (1996) Water quality in New Hanover
County tidal creeks: Futch Creek headwaters investigation. University of North
Carolina at Wilmington Center for Marine Science Research Report, 4pp.

Roberts, T.L.. (2002) Chemical constituents in the Peedee and Castle Hayne aquifers:
Porters Neck area, New Hanover County, North Carolina. Masters Thesis,
University of North Carolina at Wilmington, 64pp.

Valiela, 1., J. Costa, K. Foreman, J. M. Teal, B. Howes, and D. Aubrey. 1990. Transport
of groundwater-borne nutrients from watersheds and their effects on coastal
waters. Biogeochemistry 10, 177-197.

329




Table A-1: Pages and Futch Creek estuary nutrients

Sampling Date Nitrate M) Ammonia (uM)

- Pages Creek

HT/LT pairs

Pages High Tide 11/12/01 1.14 0.50
Pages High Tide 11/13/01 0.47 -0.01
Pages High Tide 11/15/01 1.24 0.28
Pages High Tide 11/16/01 1.14 1.60
Pages High Tide 11/18/01 1.89 1.00
Pages Low Tide 11/12/01 1.03 0.28
Pages Low Tide 11/13/01 1.07 0.70
Pages Low Tide 11/16/01 1.58 1.75
Pages Low Tide 11/18/01 1.14 0.38
Pages High Tide 4/13/02 0.10 1.01
Pages High Tide 4/14/02 0.11 1.68
Pages High Tide 4/16/02 0.12 1.33
Pages Low Tide 4/13/02 0.35 3.78
Pages Low Tide 4/14/02 0.31 1.92
Pages Low Tide 4/16/02 0.23 1.25

Futch Creek

HT/LT pairs

Futch High Tide 11/12/01 0.96 0.28
Futch High Tide 11/13/01 1.07 0.10
Futch High Tide 11/15/01 1.15 0.43
Futch High Tide 11/16/01 1.17 0.27
Futch High Tide 11/18/01 1.16 045
Futch Low Tide 11/12/01 1.74 0.67
Futch Low Tide 11/13/01 146 0.46
Futch Low Tide 11/15/01 141 6.38
Futch Low Tide 11/16/01 1.82 1.22
Futch Low Tide 11/18/01 1.53 0.61
Futch High Tide 4/13/02 0.16 1.04
Futch High Tide 4/14/02 0.10 1.01
Futch High Tide 4/16/02 0.09 0.69
Futch Low Tide 4/13/02 0.34 1.67
Futch Low Tide 4/14/02 0.47 2.17
Futch Low Tide 4/16/02 0.68 2.75
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Table A-2: Time series nutrients
Sampling Date/Time  Nitrate uM) Ammonia (uM)

Pages Creek Nov 01 time series

11/13/01 7:23 0.88 -0.04
11/13/01 8:24 1.01 0.08
11/13/01 9:28 1.33 0.23
11/13/01 10:18 1.01 0.10
11/13/01 11:27 0.86 0.49
11/13/01 12:03 0.66 0.17
11/13/01 12:42 0.70 0.36
11/13/01 13:25 1.34 0.36
11/13/01 14:25 0.97 0.03
11/13/01 15:20 1.10 -0.05
11/13/01 16:21 0.98 -0.18
11/13/01 17:20 1.07 -0.09
11/13/01 18:22 0.98 -0.11
11/13/01 19:20 1.00 -0.09

Pages Creek April 02 time series

4/14/02 8:37 0.104 1.030
4/14/02 9:45 0.113 1.682
4/14/02 10:50 0.108 0.904
4/14/02 11:50 0.136 1.373
4/14/02 12:50 0.183 1.560
4/14/02 13:48 0.188 1.862
4/14/02 14:30 0213 1.707
4/14/02 15:50 0.309 1.921
4/14/02 16:25 0.321 3.022
4/14/02 17:32 0.301 1.391
4/14/02 18:27 - 0.175 0.772
4/14/02 19:29 0.143 0.559

Futch Creek April 02 time series

4/16/02 9:00 0.094 1.859
4/16/02 10:00 0.061 0.733
4/16/02 11:00 0.093 0.688
4/16/02 12:00 0.127 0.820
4/16/02 13:00 0.201 2.499
4/16/02 14:00 0.201 1.537
4/16/02 15:03 0.349 2.535
4/16/02 16:01 0.456 2917
4/16/02 17:02 0.675 2.752
4/16/02 18:00 0.532 2.203
4/16/02 19:00 0.148 1.748
4/16/02 20:00 0.143 0.818
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Table A-3: Inlet and fresh water nutrients

Location Sampling Date Nitrate uM) Ammonia (uM)

Inlets

Rich Inlet - Low Tide 11/17/01 0.98 0.95
Rich Inlet Mouth-HT 4/15/02 0.02 0.41
Rich Inlet Mouth-HT 4/17/02 0.03 0.12
Rich Inlet @ ICW-HT 4/17/02 0.03 0.14
Rich Inlet Mouth-LT 4/15/02 0.08 0.23
Rich Inlet Mouth-LT 4/17/02 0.10 0.38
Rich Inlet @ ICW-LT 4/17102 0.08 0.19
Mason Inlet Mouth HT 4/15/02 0.03 0.28
Mason Inlet @ ICW-HT 4/17/02 0.06 0.12
Mason Inlet Mouth LT 4/15/02 0.11 0.45
Mason Inlet @ ICW-LT 4/17/02 0.10 0.26

Fresh water samples

Springs

Pages

Bayshore spring 11/15/01 1.49 1.04

Bayshore spring 4/11/02 0.11 16.37
Futch

Saltwood spring 11/16/01 21.48 0.92

Saltwood spring 4/18/02 15.20 0.86

Streams

Pages

Bayshore stream 11/15/01 1.25 3.52

Bayshore stream 4/11/02 0.69 3.09

Furtado Road stream 4/13/02 2.03 2.05

Futch

Scotts Hill Loop stream 11/15/01 28.71 145

Scotts Hill Loop stream 4/15/02 8.36 16.85
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Figure A-1

Nitrate data from the Pages and Futch Creek estuaries in: a. November 2001. b. April
2002. Open circles represent data from the Futch Creek estuary; filled circles represent
data from the Pages Creek estuary. The 4/14/02 Pages Creek hourly time series and the
4/16/02 Futch Creek hourly time series are also shown. NOj™ always increased in the
Futch Creek estuary from high tide to low tide. NO3" increased from high to low tide in
the Pages Creek estuary on all sampling days during April 2002, but not on all sampling
days in November 2001.
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Figure A-2

Ammonium data from the Pages and Futch Creek estuaries in: a. November 2001. b.
April 2002. Open squares represent data from the Futch Creek estuary; filled squares
represent data from the Pages Creek estuary. The 4/14/02 Pages Creek hourly time series
and the 4/16/02 Futch Creek hourly time series are also shown. NH," always increased in
the Futch Creek estuary from high tide to low tide, although the time series data in April
2002 showed more scatter than the nitrate time series data. NH,4" increased from high to
low tide in the Pages Creek estuary on all sampling days during April 2002, but not on all
sampling days in November 2001 (showing similar trends to the NO3™ data).
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Figure A-3

April 2002 nutrient data from Rich and Mason Inlets. a. NO;. b. NH,;". Open squares
represent data from Rich Inlet; filled squares represent data from the Mason Inlet.
Nutrients tended to increase from high to low tide in both inlets, with the exception of
Rich Inlet on 4/15/02, when NO5™ increased but NH," decreased at low tide.
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Appendix B: AMC measurements from mid-continental shelf wells

DIC and DIC isotopic analyses were performed on samples collected from a high-
permeability zone (HPZ) 2 m below the seabed offshore of southeastern North Carolina.
The HPZ, consisting of a meter of sand and shell between an overlying clay layer and an
underlying carbonate layer, is located in Long Bay, 20 km south of Holden Beach, NC, in
water 15 m deep. Moore et al (2002) measured a temperature cycle within the HPZ that
was in phase with the tide, suggesting that tidal pumping drives water exchange between
the HPZ and the ocean. This HPZ may be a source for nutrients to coastal waters (Moore
et al 2002).

DIC and DIC isotopic values from two wells (Well 1 and Well A) installed within
the HPZ and from the overlying bottom water are shown in Table 1. Figure 1 shows
DIC-8"3C and DIC-A'*C trends for mixing between the bottom water and dissolved
carbonate aquifer rock (8"C ~ +1%o, AMC ~ -1000%0), marine organic matter &3C ~-
20%o) and a 50:50 mix of DIC added from both carbonate and marine organic matter
(8'3C ~ -10%0). These preliminary 8**C-DIC and AC-DIC mixing models suggest that
‘water in the HPZ wells may be the result of mixing between bottom water and an input
with very low 8'°C and AYC values (Figure 1). For 8'*C-DIC mixing, the input DIC
8'3C values were between —10%o and —20%o. For A™C-DIC mixing, input DIC A'C
values were between —500%o and —1000%o0. These data are preliminary, but suggest that
A™C has potential as a tracer of salty groundwater discharge from confined aquifers, as

well as of fresh discharge.

References
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Table B-1: DIC and DIC isotopic values of Well 1, Well A, and bottom water

DIC
mmolkg

Well 1 Top of HPZ: +2.0m 3.609
Bottomof HPZ: +O0m 2.410

Well A Top of HPZ: 3.091
Bottom of HPZ: 3.286

Bottom water outside Well 1 2.049
outside Well A 2.057
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A¥C
o/oo
-5.21
-2.52

-3.63
-4.29

0.80
0.73

8"c
o/oo
-379.1
-185.6

-213.2
-2504

84.1
73.2
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Appendix C
Well head data from Topsail Beach and NENHC wells
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Figure C-1. July 2000 and April 2002 well head data for the NENHC S
(Castle Hayne) and D (Peedee) wells (between Pages and Futch Creeks).
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